Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398269

RESUMEN

We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of Xenopus laevis optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.

2.
PNAS Nexus ; 2(5): pgad109, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37152673

RESUMEN

Retinal ganglion cell (RGC) axons of the African clawed frog, Xenopus laevis, unlike those of mammals, are capable of regeneration and functional reinnervation of central brain targets following injury. Here, we describe a tadpole optic nerve crush (ONC) procedure and assessments of brain reinnervation based on live imaging of RGC-specific transgenes which, when paired with CRISPR/Cas9 injections at the one-cell stage, can be used to assess the function of regeneration-associated genes in vivo in F0 animals. Using this assay, we find that map3k12, also known as dual leucine zipper kinase (Dlk), is necessary for RGC axonal regeneration and acts in a dose-dependent manner. Loss of Dlk does not affect RGC innervation of the brain during development or visually driven behavior but does block both axonal regeneration and functional vision restoration after ONC. Dlk loss does not alter the acute changes in mitochondrial movement that occur within RGC axons hours after ONC but does completely block the phosphorylation and nuclear translocation of the transcription factor Jun within RGCs days after ONC; yet, Jun is dispensable for reinnervation. These results demonstrate that in a species fully capable of regenerating its RGC axons, Dlk is essential for the axonal injury signal to reach the nucleus but may affect regeneration through a different pathway than by which it signals in mammalian RGCs.

3.
Biomed Opt Express ; 14(12): 6422-6441, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420317

RESUMEN

Glaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes. We evaluated parameters such as RNFL thickness and possible dynamics, as well as compared the ganglion cell layer (GCL) soma density obtained from in vivo OCT, fluorescence scanning laser ophthalmoscopy (SLO), and ex vivo histology.

4.
Invest Ophthalmol Vis Sci ; 63(11): 9, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36239974

RESUMEN

Purpose: The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods: Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program "R." Results: EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes' MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions: Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.


Asunto(s)
Glaucoma , Disco Óptico , Animales , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa , Calcio , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Básica de Mielina , Vaina de Mielina/metabolismo , Disco Óptico/metabolismo , Primates/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo
5.
Neurobiol Dis ; 170: 105753, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569719

RESUMEN

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Ratones , Mitofagia , Neuronas/metabolismo
6.
Ann Transl Med ; 9(15): 1273, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34532410

RESUMEN

BACKGROUND: Diabetic retinopathy is a retinal vasculopathy involving all three retinal capillary plexus layers. Since human CD34+ bone marrow stem cells (BMSCs) have the potential to promote revascularization of ischemic tissue, this study tests the hypothesis that intravitreal injection of human CD34+ BMSCs can have protective effects on all layers of the retinal vasculature in eyes with diabetic retinopathy. METHODS: Streptozotocin (STZ)-induced diabetic mice were injected intravitreally with 50,000 human CD34+ BMSCs or phosphate-buffered saline (PBS) into the right eye. Systemic immunosuppression with rapamycin and tacrolimus was started 5 days before the injection and maintained for study duration to prevent rejection of human cells. All mice were euthanized 4 weeks after intravitreal injection; both eyes were enucleated for retinal flat mount immunohistochemistry. The retinal vasculature was stained with Isolectin-GS-IB4. Confocal microscopy was used to image four circular areas of interest of retina, 1-mm diameter around the optic disc. Images of superficial, intermediate, and deep retinal capillary plexus layers within the areas of interest were obtained and analyzed using ImageJ software with the Vessel Analysis plugin to quantitate the retinal vascular density and vascular length density in the three plexus layers. RESULTS: Three distinct retinal capillary plexus layers were visualized and imaged using confocal microscopy. Eyes that received intravitreal injection of CD34+ BMSCs (N=9) had significantly higher vascular density and vascular length density in the superficial retinal capillary plexus when compared to the untreated contralateral eyes (N=9) or PBS treated control eyes (N=12; P values <0.05 using ANOVA followed by post-hoc tests). For the intermediate and deep plexus layers, the difference was not statistically significant. CONCLUSIONS: The protective effect of intravitreal injection of the human CD34+ BMSCs on the superficial retinal capillary plexus layers is demonstrated using confocal microscopy in this murine model of diabetic retinopathy.

7.
Ann Transl Med ; 9(15): 1276, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34532413

RESUMEN

Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.

8.
Proc Natl Acad Sci U S A ; 117(35): 21690-21700, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817515

RESUMEN

The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neurogénesis/fisiología , Nervio Óptico/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Retina/metabolismo , Factores de Transcripción/metabolismo
9.
Redox Biol ; 34: 101465, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32473993

RESUMEN

Retinal ganglion cell (RGC) degeneration is the root cause for vision loss in glaucoma as well as in other forms of optic neuropathy. A variety of studies have implicated abnormal mitochondrial quality control (MQC) as contributing to RGC damage and degeneration in optic neuropathies. The ability to differentiate human pluripotent stem cells (hPSCs) into RGCs provides an opportunity to study RGC MQC in great detail. Degradation of damaged mitochondria is a critical step of MQC, and here we have used hPSC-derived RGCs (hRGCs) to analyze how altered mitochondrial degradation pathways in hRGCs affect their survival. Using pharmacological methods, we have investigated the role of the proteasomal and endo-lysosomal pathways in degrading damaged mitochondria in hRGCs and their precursor stem cells. We found that upon mitochondrial damage induced by the proton uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP), hRGCs more efficiently degraded mitochondria than did their precursor stem cells. We further identified that for degrading damaged mitochondria, stem cells predominantly use the ubiquitine-proteasome system (UPS) while hRGCs use the endo-lysosomal pathway. UPS inhibition causes apoptosis and cell death in stem cells, while hRGC viability is dependent on the endo-lysosomal pathway but not on the UPS pathway. These findings suggest that manipulation of the endo-lysosomal pathway could be therapeutically relevant for RGC protection in treating optic neuropathies associated with mitophagy defects. Endo-lysosome dependent cell survival is also conserved in other human neurons as we found that differentiated human cerebral cortical neurons also degenerated upon endo-lysosomal inhibition but not with proteasome inhibition.


Asunto(s)
Glaucoma , Mitofagia , Diferenciación Celular , Glaucoma/metabolismo , Humanos , Mitocondrias , Células Ganglionares de la Retina/metabolismo
10.
Exp Eye Res ; 190: 107865, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682846

RESUMEN

Human CD34 + stem cells are mobilized from bone marrow to sites of tissue ischemia and play an important role in tissue revascularization. This study used a murine model to test the hypothesis that intravitreal injection of human CD34 + stem cells harvested from bone marrow (BMSCs) can have protective effects in eyes with diabetic retinopathy. Streptozotocin-induced diabetic mice (C57BL/6J) were used as a model for diabetic retinopathy. Subcutaneous implantation of Alzet pump, loaded with Tacrolimus and Rapamycin, 5 days prior to intravitreal injection provided continuous systemic immunosuppression for the study duration to avoid rejection of human cells. Human CD34 + BMSCs were harvested from the mononuclear cell fraction of bone marrow from a healthy donor using magnetic beads. The CD34 + cells were labeled with enhanced green fluorescent protein (EGFP) using a lentiviral vector. The right eye of each mouse received an intravitreal injection of 50,000 EGFP-labeled CD34 + BMSCs or phosphate buffered saline (PBS). Simultaneous multimodal in vivo retinal imaging system consisting of fluorescent scanning laser ophthalmoscopy (enabling fluorescein angiography), optical coherence tomography (OCT) and OCT angiography was used to confirm the development of diabetic retinopathy and study the in vivo migration of the EGFP-labeled CD34 + BMSCs in the vitreous and retina following intravitreal injection. After imaging, the mice were euthanized, and the eyes were removed for immunohistochemistry. In addition, microarray analysis of the retina and retinal flat mount analysis of retinal vasculature were performed. The development of retinal microvascular changes consistent with diabetic retinopathy was visualized using fluorescein angiography and OCT angiography between 5 and 6 months after induction of diabetes in all diabetic mice. These retinal microvascular changes include areas of capillary nonperfusion and late leakage of fluorescein dye. Multimodal in vivo imaging and immunohistochemistry identified EGFP-labeled cells in the superficial retina and along retinal vasculature at 1 and 4 weeks following intravitreal cell injection. Microarray analysis showed changes in expression of 162 murine retinal genes following intravitreal CD34 + BMSC injection when compared to PBS-injected control. The major molecular pathways affected by intravitreal CD34 + BMSC injection in the murine retina included pathways implicated in the pathogenesis of diabetic retinopathy including Toll-like receptor, MAP kinase, oxidative stress, cellular development, assembly and organization pathways. At 4 weeks following intravitreal injection, retinal flat mount analysis showed preservation of the retinal vasculature in eyes injected with CD34 + BMSCs when compared to PBS-injected control. The study findings support the hypothesis that intravitreal injection of human CD34 + BMSCs results in retinal homing and integration of these human cells with preservation of the retinal vasculature in murine eyes with diabetic retinopathy.


Asunto(s)
Antígenos CD34/metabolismo , Diabetes Mellitus Experimental/terapia , Retinopatía Diabética/terapia , Modelos Animales de Enfermedad , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Animales , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/metabolismo , Angiografía con Fluoresceína , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Estreptozocina , Tomografía de Coherencia Óptica , Acondicionamiento Pretrasplante
11.
Cell Stem Cell ; 23(3): 444-452.e4, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30174295

RESUMEN

Adult neurogenesis, arising from quiescent radial-glia-like neural stem cells (RGLs), occurs throughout life in the dentate gyrus. How neural stem cells are maintained throughout development to sustain adult mammalian neurogenesis is not well understood. Here, we show that milk fat globule-epidermal growth factor (EGF) 8 (Mfge8), a known phagocytosis factor, is highly enriched in quiescent RGLs in the dentate gyrus. Mfge8-null mice exhibit decreased adult dentate neurogenesis, and furthermore, adult RGL-specific deletion of Mfge8 leads to RGL overactivation and depletion. Similarly, loss of Mfge8 promotes RGL activation in the early postnatal dentate gyrus, resulting in a decreased number of label-retaining RGLs in adulthood. Mechanistically, loss of Mfge8 elevates mTOR1 signaling in RGLs, inhibition of which by rapamycin returns RGLs to quiescence. Together, our study identifies a neural-stem-cell-enriched niche factor that maintains quiescence and prevents developmental exhaustion of neural stem cells to sustain continuous neurogenesis in the adult mammalian brain.


Asunto(s)
Células Madre Adultas/metabolismo , Antígenos de Superficie/metabolismo , Proteínas de la Leche/metabolismo , Células-Madre Neurales/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados
12.
Elife ; 52016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27501334

RESUMEN

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl(-) levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl(-) regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Sensibilidad de Contraste/fisiología , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Células Ganglionares de la Retina/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Cloruros/metabolismo , Regulación de la Expresión Génica , Transporte Iónico , Larva/fisiología , Potenciales de la Membrana/fisiología , Imagen Molecular , Técnicas de Placa-Clamp , Receptor Cannabinoide CB1/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Ganglionares de la Retina/citología , Transducción de Señal , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Visión Ocular/fisiología , Xenopus laevis/fisiología
13.
Exp Neurol ; 275 Pt 3: 436-449, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450468

RESUMEN

Repetitive mild traumatic brain injury (mTBI) is implicated in chronic neurological illness. The development of animal models of repetitive mTBI in mice is essential for exploring mechanisms of these chronic diseases, including genetic vulnerability by using transgenic backgrounds. In this study, the rat model of impact acceleration (IA) was redesigned for the mouse cranium and used in two clinically relevant repetitive mTBI paradigms. We first determined, by using increments of weight dropped from 1m that the 40g weight was most representative of mTBI and was not associated with fractures, brain contusions, anoxic-ischemic injury, mortality, or significant neurological impairments. Quantitative evaluation of traumatic axonal injury (TAI) in the optic nerve/tract, cerebellum and corpus callosum confirmed that weight increase produced a graded injury. We next evaluated two novel repetitive mTBI paradigms (1 time per day or 3 times per day at days 0, 1, 3, and 7) and compared the resulting TAI, neuronal cell death, and neuroinflammation to single hit mTBI at sub-acute (7days) and chronic time points (10weeks) post-injury. Both single and repetitive mTBI caused TAI in the optic nerve/tract, cerebellum, corticospinal tract, lateral lemniscus and corpus callosum. Reactive microglia with phagocytic phenotypes were present at injury sites. Severity of axonal injury corresponded to impact load and frequency in the optic nerve/tract and cerebellum. Both single and repeat injury protocols were associated with retinal ganglion cell loss and optic nerve degeneration; these outcomes correlated with impact load and number/frequency. No phosphorylated tau immunoreactivity was detected in the brains of animals subjected to repetitive mTBI. Our findings establish a new model of repetitive mTBI model featured by TAI in discrete CNS tracts, especially the visual system and cerebellum. Injury in retina and optic nerve provides a sensitive measure of severity of mTBI, thus enabling further studies on mechanisms and experimental therapeutics. Our model can also be useful in exploring mechanisms of chronic neurological disease caused by repetitive mTBI in wild-type and transgenic mice.


Asunto(s)
Aceleración/efectos adversos , Axones/patología , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Degeneración Nerviosa/patología , Células Ganglionares de la Retina/patología , Animales , Lesiones Encefálicas/complicaciones , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/etiología , Nervio Óptico/patología
14.
Sci Rep ; 5: 16595, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563826

RESUMEN

Retinal ganglion cell (RGC) injury and cell death from glaucoma and other forms of optic nerve disease is a major cause of irreversible vision loss and blindness. Human pluripotent stem cell (hPSC)-derived RGCs could provide a source of cells for the development of novel therapeutic molecules as well as for potential cell-based therapies. In addition, such cells could provide insights into human RGC development, gene regulation, and neuronal biology. Here, we report a simple, adherent cell culture protocol for differentiation of hPSCs to RGCs using a CRISPR-engineered RGC fluorescent reporter stem cell line. Fluorescence-activated cell sorting of the differentiated cultures yields a highly purified population of cells that express a range of RGC-enriched markers and exhibit morphological and physiological properties typical of RGCs. Additionally, we demonstrate that aligned nanofiber matrices can be used to guide the axonal outgrowth of hPSC-derived RGCs for in vitro optic nerve-like modeling. Lastly, using this protocol we identified forskolin as a potent promoter of RGC differentiation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Ingeniería Genética/métodos , Células Ganglionares de la Retina/metabolismo , Animales , Línea Celular , Células Cultivadas , Células Madre Embrionarias/citología , Expresión Génica , Humanos , Inmunohistoquímica , Potenciales de la Membrana/genética , Ratones , Microscopía Fluorescente , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antígenos Thy-1/metabolismo , Factores de Tiempo , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo
15.
Exp Neurol ; 273: 168-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311071

RESUMEN

Chronic traumatic encephalopathy (CTE) is associated with repetitive mild traumatic brain injury (mTBI) in the context of contact and collision sports, but not all exposed individuals develop this condition. In addition, experiments in animal models in several laboratories have shown that non-transgenic mice do not develop tauopathy after exposure to repetitive mTBI schedules. It is thus reasonable to assume that genetic factors may play an etiological role in the development of CTE. More than 40 mutations in the tau gene are known to confer proneness to aggregation and are thought to cause neurodegenerative diseases including frontotemporal degeneration (FTD). Transgenic mice harboring these mutations can be used to ask the question whether repetitive mTBI can accelerate onset and course of tauopathy or worsen the outcomes of transgenic disease. In this study, we exposed mice harboring the tau P301S transgene associated with FTD to repetitive mTBI schedules by impact acceleration (IA) that we have previously characterized. We explored the progression of tauopathy in the retina and neocortex based on density of neuronal profiles loaded with tau pS422, a marker of advanced tau hyperphosphorylation. We found that the density of tau pS422 (+) retinal ganglion cells (RGCs) increased twenty fold with one mTBI hit, a little over fifty fold with four mTBI hits and sixty fold with 12 mTBI hits. The severity of mTBI burden (number of hits) was a significant factor in tauopathy outcome. On the other hand, we found no association between repetitive mTBI and density of pS422 (+) neuronal profiles in neocortex, a region that is not featured by significant TAI in our repetitive mTBI model. We observed similar, but less prominent, trends in tauopathy-prone transgenic mice harboring all 6 isoforms of wild-type human tau without mouse tau. Our findings indicate that repetitive mTBI accelerates tauopathy under diverse genetic conditions predisposing to tau aggregation and suggest a vulnerability-stress model in understanding some cases of acquired neurodegenerative disease after repetitive mTBI.


Asunto(s)
Lesiones Encefálicas/complicaciones , Mutación/genética , Retina/patología , Tauopatías/patología , Proteínas tau/genética , Análisis de Varianza , Animales , Recuento de Células , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Prolina/genética , Tractos Piramidales/patología , Retina/metabolismo , Células Ganglionares de la Retina/patología , Serina/genética , Tauopatías/complicaciones , Tauopatías/genética , Vías Visuales/metabolismo , Vías Visuales/patología , gamma-Sinucleína/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(33): 10509-14, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240339

RESUMEN

Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event.


Asunto(s)
Astrocitos/citología , Vaina de Mielina/química , Nervio Óptico/fisiología , Fagocitosis/fisiología , Xenopus laevis/fisiología , Animales , Animales Modificados Genéticamente , Antígenos de Superficie/metabolismo , Axones/metabolismo , Inmunohistoquímica , Lípidos/química , Metamorfosis Biológica , Microglía/metabolismo , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Regeneración Nerviosa , Fagocitos/citología , Factores de Tiempo , Transgenes , Triyodotironina/genética , Proteínas de Xenopus/metabolismo , Proteína de Unión al GTP rac1/fisiología
17.
Autophagy ; 10(12): 2383-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484086

RESUMEN

The mitochondrial quality control system regulating mitochondria biogenesis, dynamics, and degradation has been extensively studied because of its roles in normal cell homeostasis and dysfunction due to aging or disease. Mitochondria degradation is generally thought to occur by autophagy and has therefore been viewed as a cell-autonomous process. In a recent study, we demonstrated that a large fraction of retinal ganglion cell mitochondria undergo lysosomal degradation within the astrocytes of the optic nerve head. It will be important to determine whether other neurons with long axons also use transcellular mitophagy, or transmitophagy, as a primary mitochondrial quality control mechanism either under normal physiological conditions or in disease. The elucidation of the underlying molecular mechanisms is necessary to determine whether defects in transmitophagy are involved in pathogenesis and whether it should become a therapeutic target.


Asunto(s)
Axones/fisiología , Mitofagia/fisiología , Disco Óptico/citología , Células Ganglionares de la Retina/fisiología , Animales
18.
Proc Natl Acad Sci U S A ; 111(26): 9633-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979790

RESUMEN

It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.


Asunto(s)
Axones/fisiología , Mitofagia/fisiología , Disco Óptico/citología , Células Ganglionares de la Retina/fisiología , Animales , Astrocitos/metabolismo , Tomografía con Microscopio Electrónico , Exocitosis/fisiología , Imagenología Tridimensional , Inmunohistoquímica , Hibridación Fluorescente in Situ , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes , Lisosomas/metabolismo , Ratones , Fagocitosis/fisiología , Células Ganglionares de la Retina/citología , Proteína Fluorescente Roja
19.
PLoS One ; 8(8): e70872, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967127

RESUMEN

Synaptic re-uptake of dopamine is dependent on the dopamine transporter (DAT), which is regulated by its distribution to the cell surface. DAT trafficking is modulated by the Parkinson's disease-linked protein alpha-synuclein, but the contribution of synuclein family members beta-synuclein and gamma-synuclein to DAT trafficking is not known. Here we use SH-SY5Y cells as a model of DAT trafficking to demonstrate that all three synucleins negatively regulate cell surface distribution of DAT. Under these conditions the synucleins limit export of DAT from the endoplasmic reticulum (ER) by impairment of the ER-Golgi transition, leading to accumulation of DAT in this compartment. This mechanism for regulating DAT export indirectly through effects on ER and Golgi function represents a previously unappreciated role for the extended synuclein family that is likely applicable to trafficking of the many proteins that rely on the secretory pathway.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Retículo Endoplásmico/metabolismo , Sinucleínas/metabolismo , Encéfalo/metabolismo , Línea Celular , Membrana Celular/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Unión Proteica , Transporte de Proteínas , Transfección
20.
Proc Natl Acad Sci U S A ; 110(10): 4045-50, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431148

RESUMEN

Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.


Asunto(s)
Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/fisiología , Células Ganglionares de la Retina/enzimología , Células Ganglionares de la Retina/patología , Animales , Muerte Celular/genética , Muerte Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glaucoma/tratamiento farmacológico , Glaucoma/etiología , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Ratones , Enfermedades del Nervio Óptico/etiología , Enfermedades del Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/enzimología , Traumatismos del Nervio Óptico/patología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas , Ratas Wistar , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...