Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 9(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810085

RESUMEN

Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5-PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5-PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.

2.
Proteins ; 88(1): 187-195, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325330

RESUMEN

Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 µM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.


Asunto(s)
Basigina/farmacología , Proteínas Portadoras/genética , Malaria Falciparum/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Humanos , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Unión Proteica/efectos de los fármacos , Proteínas Protozoarias/genética
3.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204103

RESUMEN

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Sitios de Unión , Proteínas Portadoras/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Femenino , Células HEK293 , Voluntarios Sanos , Humanos , Malaria Falciparum/parasitología , Masculino , Merozoítos/fisiología , Persona de Mediana Edad , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/inmunología , Conejos , Ratas , Ratas Sprague-Dawley , Adulto Joven
4.
Front Immunol ; 10: 1254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214195

RESUMEN

The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.


Asunto(s)
Eritrocitos/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
5.
Nat Microbiol ; 4(9): 1497-1507, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31133755

RESUMEN

The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells through a process requiring interaction of the P. vivax Duffy binding protein (PvDBP) with its human receptor, the Duffy antigen receptor for chemokines. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to P. vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunized in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to the Duffy antigen receptor for chemokines, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of P. vivax. This identified a broadly neutralizing human monoclonal antibody that inhibited invasion of all tested strains of P. vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología , Anticuerpos Antiprotozoarios/química , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Cristalografía por Rayos X , Sistema del Grupo Sanguíneo Duffy/metabolismo , Epítopos de Linfocito B , Eritrocitos/parasitología , Variación Genética , Humanos , Fragmentos Fab de Inmunoglobulinas , Vacunas contra la Malaria/administración & dosificación , Malaria Vivax/parasitología , Plasmodium knowlesi/genética , Plasmodium knowlesi/crecimiento & desarrollo , Plasmodium knowlesi/inmunología , Plasmodium vivax/genética , Plasmodium vivax/crecimiento & desarrollo , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reticulocitos/parasitología
6.
Nat Commun ; 10(1): 1953, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028254

RESUMEN

Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection.


Asunto(s)
Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antiprotozoarios/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/metabolismo , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Primates
7.
NPJ Vaccines ; 3: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131879

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

8.
JACC Heart Fail ; 5(6): 411-420, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28501523

RESUMEN

OBJECTIVES: This study reports the development and predictive value of the 60-foot walk test (60ftWT), a brief functional status measure for patients with heart failure (HF). The goal was to develop a test suitable for clinical settings and appropriate for patients with walking impairments. BACKGROUND: The 6-min walk test (6MWT) has considerable predictive value, but requires a long walking course and has limited utility in patients with mobility-related comorbidities. A shorter, more clinically practical test is therefore needed. METHODS: A total of 144 patients (age 57.4 ± 11.4 years; 111 males) with symptomatic HF received baseline assessments using the 60ftWT, 6MWT, and self-reported symptom and health status. Patients were tested 3 months later to determine stability of assessments. HF hospitalizations or death from any cause were recorded for 3.5 years following baseline. RESULTS: Median 60ftWT completion time was 26 s (interquartile range: 22 to 31 s). Longer 60ftWT time was associated with shorter 6MWT distance (r = -0.75; p < 0.001), and with higher symptom severity at baseline (r = -0.40; p < 0.001). Longer 60ftWT times also predicted increases in 6MWT and symptoms from baseline to 3 months (p < 0.01). Both WTs predicted long-term clinical outcomes, with patients taking longer than 31 s to complete the 60ftWT at greatest risk for HF hospitalization or death (hazard ratio: 2.13; 95% confidence interval: 1.18 to 3.84; p = 0.01). CONCLUSIONS: The 60ftWT is an easily administered functional status measure that predicts adverse events, symptoms, and health status. It has the potential for considerable clinical utility to help identify patients at risk for future events and to calibrate treatments designed to improve functional status and quality of life.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Prueba de Paso/métodos , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Femenino , Estado de Salud , Insuficiencia Cardíaca/mortalidad , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Autoinforme , Disfunción Ventricular Izquierda/mortalidad , Disfunción Ventricular Izquierda/fisiopatología , Adulto Joven
9.
Int J Parasitol ; 47(7): 435-446, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28153778

RESUMEN

Development of bespoke biomanufacturing processes remains a critical bottleneck for translational studies, in particular when modest quantities of a novel product are required for proof-of-concept Phase I/II clinical trials. In these instances the ability to develop a biomanufacturing process quickly and relatively cheaply, without risk to product quality or safety, provides a great advantage by allowing new antigens or concepts in immunogen design to more rapidly enter human testing. These challenges with production and purification are particularly apparent when developing recombinant protein-based vaccines for difficult parasitic diseases, with Plasmodium falciparum malaria being a prime example. To that end, we have previously reported the expression of a novel protein vaccine for malaria using the ExpreS2Drosophila melanogaster Schneider 2 stable cell line system, however, a very low overall process yield (typically <5% recovery of hexa-histidine-tagged protein) meant the initial purification strategy was not suitable for scale-up and clinical biomanufacture of such a vaccine. Here we describe a newly available affinity purification method that was ideally suited to purification of the same protein which encodes the P. falciparum reticulocyte-binding protein homolog 5 - currently the leading antigen for assessment in next generation vaccines aiming to prevent red blood cell invasion by the blood-stage parasite. This purification system makes use of a C-terminal tag known as 'C-tag', composed of the four amino acids, glutamic acid - proline - glutamic acid - alanine (E-P-E-A), which is selectively purified on a CaptureSelect™ affinity resin coupled to a camelid single chain antibody, called NbSyn2. The C-terminal fusion of this short C-tag to P. falciparum reticulocyte-binding protein homolog 5 achieved >85% recovery and >70% purity in a single step purification directly from clarified, concentrated Schneider 2 cell supernatant under mild conditions. Biochemical and immunological analysis showed that the C-tagged and hexa-histidine-tagged P. falciparum reticulocyte-binding protein homolog 5 proteins are comparable. The C-tag technology has the potential to form the basis of a current good manufacturing practice-compliant platform, which could greatly improve the speed and ease with which novel protein-based products progress to clinical testing.


Asunto(s)
Proteínas Portadoras/química , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/metabolismo , Animales , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Línea Celular , Clonación Molecular , Conejos
10.
Proc Natl Acad Sci U S A ; 114(5): 998-1002, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096331

RESUMEN

Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.


Asunto(s)
Antígenos de Protozoos/química , Proteínas Portadoras/química , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/química , Ingeniería de Proteínas/métodos , Algoritmos , Sustitución de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Basigina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Clonación Molecular , Biología Computacional/métodos , Diseño de Fármacos , Calor , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Vacunas de Subunidad/inmunología
11.
Sci Rep ; 6: 30357, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27457156

RESUMEN

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen.


Asunto(s)
Proteínas Portadoras/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Basigina/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Drosophila melanogaster , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...