Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 12(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38257864

RESUMEN

Ischemic stroke (IS) can be caused by perturbations of the gut-brain axis. An imbalance in the gut microbiota (GM), or dysbiosis, may be linked to several IS risk factors and can influence the brain through the production of different metabolites, such as short-chain fatty acids (SCFAs), indole and derivatives. This study examines ecological changes in the GM and its metabolic activities after stroke. Fecal samples of 10 IS patients were compared to 21 healthy controls (CTRLs). GM ecological profiles were generated via 16S rRNA taxonomy as functional profiles using metabolomics analysis performed with a gas chromatograph coupled to a mass spectrometer (GC-MS). Additionally fecal zonulin, a marker of gut permeability, was measured using an enzyme-linked immuno assay (ELISA). Data were analyzed using univariate and multivariate statistical analyses and correlated with clinical features and biochemical variables using correlation and nonparametric tests. Metabolomic analyses, carried out on a subject subgroup, revealed a high concentration of fecal metabolites, such as SCFAs, in the GM of IS patients, which was corroborated by the enrichment of SCFA-producing bacterial genera such as Bacteroides, Christensellaceae, Alistipes and Akkermansia. Conversely, indole and 3-methyl indole (skatole) decreased compared to a subset of six CTRLs. This study illustrates how IS might affect the gut microbial milieu and may suggest potential microbial and metabolic biomarkers of IS. Expanded populations of Akkermansia and enrichment of acetic acid could be considered potential disease phenotype signatures.

2.
J Anal Methods Chem ; 2018: 8792085, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686933

RESUMEN

Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA