Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-28208603

RESUMEN

This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%-103%), and a quantitative matrix spike recovery (100%).


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente/instrumentación , Mercurio/análisis , Monitoreo del Ambiente/métodos , Propiedades de Superficie
2.
Sci Total Environ ; 448: 84-95, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23010282

RESUMEN

Quantifying the local and regional impacts of speciated mercury (Hg) emissions from major urban and industrial areas is critical for understanding Hg transport and cycling in the environment. The Chicago/Gary urban area is one location where Hg emissions from industrial sources are significant and the regional transport of emissions may contribute to elevated ambient Hg concentrations at downwind locations. From July to November 2007, we collected semi-continuous measurements of gaseous elemental Hg (Hg(0)), fine particulate bound Hg (Hgp), and divalent reactive gaseous Hg (RGM) in Chicago, IL and Holland, MI to characterize the impact of Chicago/Gary source emissions on Hg concentrations in southwest Michigan and to improve our overall understanding of speciated Hg transport and deposition. The mean (and median) concentrations of Hg(0), Hgp, and RGM in Chicago were 2.5ng/m(3) (1.9ng/m(3)), 9pg/m(3) (5pg/m(3)), and 17pg/m(3) (6pg/m(3)), respectively. In Holland the mean (and median) concentrations were 1.3ng/m(3) (1.3ng/m(3)), 6pg/m(3) (6pg/m(3)), and 8pg/m(3) (2pg/m(3)), respectively. Cluster analysis of 24-hour HYSPLIT back-trajectories associated with the semi-continuous Hg measurements indicated that southwest transport from Chicago/Gary to Holland occurred during approximately 27% of the study. In Holland, under this transport regime, we observed a five-fold increase in RGM relative to the median concentration of the other transport clusters. We applied the HYSPLIT dispersion model to two case study periods to further quantify the impact of Chicago/Gary sources on southeast Michigan and investigate the role of direct transport and dispersion of speciated Hg emissions. Results suggested that more than 50% of the maximum RGM concentrations observed in Holland during the selected periods could be attributed to direct transport of primary RGM emissions from Chicago/Gary. The remaining RGM fractions are believed to be associated with Hg(0) oxidation during transport over Lake Michigan.


Asunto(s)
Movimientos del Aire , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Mercurio/análisis , Contaminantes Atmosféricos/química , Chicago/epidemiología , Análisis por Conglomerados , Geografía , Illinois , Lagos/química , Mercurio/química , Michigan , Oxidación-Reducción
3.
Hypertension ; 54(3): 659-67, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19620518

RESUMEN

Fine particulate matter air pollution plus ozone impairs vascular function and raises diastolic blood pressure. We aimed to determine the mechanism and air pollutant responsible. The effects of pollution on heart rate variability, blood pressure, biomarkers, and brachial flow-mediated dilatation were determined in 2 randomized, double-blind, crossover studies. In Ann Arbor, 50 subjects were exposed to fine particles (150 microg/m(3)) plus ozone (120 parts per billion) for 2 hours on 3 occasions with pretreatments of an endothelin antagonist (Bosentan, 250 mg), antioxidant (Vitamin C, 2 g), or placebo. In Toronto, 31 subjects were exposed to 4 different conditions (particles plus ozone, particles, ozone, and filtered air). In Toronto, diastolic blood pressure significantly increased (2.9 and 3.6 mm Hg) only during particle-containing exposures in association with particulate matter concentration and reductions in heart rate variability. Flow-mediated dilatation significantly decreased (2.0% and 2.9%) only 24 hours after particle-containing exposures in association with particulate matter concentration and increases in blood tumor necrosis factor alpha. In Ann Arbor, diastolic blood pressure significantly similarly increased during all of the exposures (2.5 to 4.0 mm Hg), a response not mitigated by pretreatments. Flow-mediated dilatation remained unaltered. Particulate matter, not ozone, was responsible for increasing diastolic blood pressure during air pollution inhalation, most plausibly by instigating acute autonomic imbalance. Only particles from urban Toronto additionally impaired endothelial function, likely via slower proinflammatory pathways. Our findings demonstrate credible mechanisms whereby fine particulate matter could trigger acute cardiovascular events and that aspects of exposure location may be an important determinant of the health consequences.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Contaminación del Aire/análisis , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ozono/farmacología , Presión Sanguínea/fisiología , Arteria Braquial/efectos de los fármacos , Arteria Braquial/fisiología , Estudios Cruzados , Electrocardiografía Ambulatoria , Monitoreo del Ambiente/métodos , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Exposición por Inhalación/análisis , Masculino , Oxidantes Fotoquímicos/farmacología , Material Particulado/farmacología , Adulto Joven
4.
Environ Sci Technol ; 41(6): 1970-6, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17410792

RESUMEN

Atmospheric models and limited measurements indicate that dry deposition of atmospheric mercury is an important process by which mercury is input to ecosystems. To begin to fill the measurement data gap, multiple methods were used simultaneously during seasonal campaigns conducted in 2005 and 2006 to estimate dry deposition of atmospheric mercury at two Mercury Deposition Network (MDN) sites in rural Nevada and in Reno, Nevada. Gaseous elemental mercury (Hg0), reactive gaseous mercury (RGM), and particulate-bound mercury (Hgp) concentrations were measured using Tekran 2537A/1130/ 1135 systems. These speciated measurements were combined with on-site meteorological measurements to estimate depositional fluxes of RGM and Hgp using dry deposition models. Modeled fluxes were compared with more direct measurements obtained using polysulfone cation-exchange membranes and foliar surfaces. Dynamic flux chambers were used to measure soil mercury exchange. RGM concentrations were higher during warmer months at all sites, leading to seasonal variation in the modeled importance of RGM as a component of total depositional load. The ratio of dry to wet deposition was between 10 and 90%, and varied with season and with the methods used for dry deposition approximations. This work illustrates the variability of mercury dry deposition with location and time and highlights the need for direct dry deposition measurements.


Asunto(s)
Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Contaminantes Ambientales/análisis , Mercurio/análisis , Atmósfera/análisis , Membranas Artificiales , Modelos Teóricos , Nevada , Hojas de la Planta/química , Estaciones del Año
6.
Inhal Toxicol ; 16(6-7): 473-80, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15204763

RESUMEN

The health effects of ambient fine particulate matter (PM(2.5)) and its potential impact on vascular endothelial function have not been thoroughly investigated. As endothelial dysfunction plays an important role in the pathogenesis of atherosclerosis and its complications, we examined the effects of concentrated fine ambient particles (CAPs) on the plasma level of asymmetric dimethylarginine (ADMA) in a pilot study. ADMA is a circulating endogenous inhibitor of nitric oxide synthase (NOS) that is associated with impaired vascular function and increased risk for cardiovascular events. A mobile air research laboratory (AirCARE 1) was used to provide "real-world" CAPs exposures for this study conducted in Detroit, MI. Fourteen Brown Norway rats were exposed to filtered air (FA) (n = 7) or CAPs (0.1-2.5 microm) (n = 7) for 3 consecutive days (8 h/day) in July 2002. Rats were exposed during these periods to average particle mass concentrations of 354 microg/m(3). Rat plasma samples were collected 24 h postexposure. Plasma concentrations of ADMA were significantly elevated in rats exposed to CAPs versus those exposed to FA (mean +/- standard deviation = 1.49 +/- 0.18 vs. 1.29 +/- 0.26 microM, p =.05 by one-tailed t-test). Analyses of meteorological data and CAPs trace element composition suggest that local particle emission sources contributed largely to overall mass of CAPs. Results of this pilot study suggest that exposure to PM(2.5) at high concentrations may trigger an acute increase in circulating ADMA level. This finding has implications for the regulation of vasomotor tone by particulate pollutants and the propensity for adverse cardiovascular events.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Arginina/análogos & derivados , Arginina/sangre , Animales , Cámaras de Exposición Atmosférica , Exposición por Inhalación/efectos adversos , Masculino , Conceptos Meteorológicos , Óxido Nítrico Sintasa/antagonistas & inhibidores , Tamaño de la Partícula , Proyectos Piloto , Ratas , Ratas Endogámicas BN
7.
Environ Health Perspect ; 110 Suppl 2: 173-81, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11929726

RESUMEN

We report on the research conducted by the Community Action Against Asthma (CAAA) in Detroit, Michigan, to evaluate personal and community-level exposures to particulate matter (PM) among children with asthma living in an urban environment. CAAA is a community-based participatory research collaboration among academia, health agencies, and community-based organizations. CAAA investigates the effects of environmental exposures on the residents of Detroit through a participatory process that engages participants from the affected communities in all aspects of the design and conduct of the research; disseminates the results to all parties involved; and uses the research results to design, in collaboration with all partners, interventions to reduce the identified environmental exposures. The CAAA PM exposure assessment includes four seasonal measurement campaigns each year that are conducted for a 2-week duration each season. In each seasonal measurement period, daily ambient measurements of PM2.5 and PM10 (particulate matter with a mass median aerodynamic diameter less than 2.5 microm and 10 microm, respectively) are collected at two elementary schools in the eastside and southwest communities of Detroit. Concurrently, indoor measurements of PM2.5 and PM10 are made at the schools as well as inside the homes of a subset of 20 children with asthma. Daily personal exposure measurements of PM10 are also collected for these 20 children with asthma. Results from the first five seasonal assessment periods reveal that mean personal PM10 (68.4 39.2 microg/m(3)) and indoor home PM10 (52.2 30.6 microg/m(3)) exposures are significantly greater (p < 0.05) than the outdoor PM10 concentrations (25.8 11.8 microg/m(3)). The same was also found for PM2.5 (indoor PM2.5 = 34.4 21.7 microg/m(3); outdoor PM2.5 = 15.6 8.2 microg/m(3)). In addition, significant differences (p < 0.05) in community-level exposure to both PM10 and PM2.5 are observed between the two Detroit communities (southwest PM10 = 28.9 14.4 microg/m(3)), PM2.5 = 17.0 9.3 microg/m(3); eastside PM10 = 23.8 12.1 microg/m(3), PM2.5 = 15.5 9.0 microg/m(3). The increased levels in the southwest Detroit community are likely due to the proximity to heavy industrial pollutant point sources and interstate motorways. Trace element characterization of filter samples collected over the 2-year period will allow a more complete assessment of the PM components. When combined with other project measures, including concurrent seasonal twice-daily peak expiratory flow and forced expiratory volume at 1 sec and daily asthma symptom and medication dairies for 300 children with asthma living in the two Detroit communities, these data will allow not only investigations into the sources of PM in the Detroit airshed with regard to PM exposure assessment but also the role of air pollutants in exacerbation of childhood asthma.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Asma/etiología , Protección a la Infancia , Exposición a Riesgos Ambientales , Adolescente , Contaminantes Atmosféricos/análisis , Niño , Preescolar , Ciudades , Monitoreo del Ambiente , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Michigan , Tamaño de la Partícula , Pruebas de Función Respiratoria , Estaciones del Año , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA