Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419630

RESUMEN

B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , FN-kappa B , Diferenciación Celular
2.
J Allergy Clin Immunol ; 152(3): 689-699.e6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36858158

RESUMEN

BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.


Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Diferenciación Celular
3.
Elife ; 122023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861964

RESUMEN

Differentiation of B cells into antibody-secreting cells (ASCs) is a key process to generate protective humoral immunity. A detailed understanding of the cues controlling ASC differentiation is important to devise strategies to modulate antibody formation. Here, we dissected differentiation trajectories of human naive B cells into ASCs using single-cell RNA sequencing. By comparing transcriptomes of B cells at different stages of differentiation from an in vitro model with ex vivo B cells and ASCs, we uncovered a novel pre-ASC population present ex vivo in lymphoid tissues. For the first time, a germinal-center-like population is identified in vitro from human naive B cells and possibly progresses into a memory B cell population through an alternative route of differentiation, thus recapitulating in vivo human GC reactions. Our work allows further detailed characterization of human B cell differentiation into ASCs or memory B cells in both healthy and diseased conditions.


Asunto(s)
Células Productoras de Anticuerpos , Linfocitos B , Humanos , Inmunidad Humoral , Diferenciación Celular , Análisis de la Célula Individual
4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232432

RESUMEN

Patients with inflammatory bowel disease (IBD) produce enhanced immunoglobulin A (IgA) against the microbiota compared to healthy individuals, which has been correlated with disease severity. Since IgA complexes can potently activate myeloid cells via the IgA receptor FcαRI (CD89), excessive IgA production may contribute to IBD pathology. However, the cellular mechanisms that contribute to dysregulated IgA production in IBD are poorly understood. Here, we demonstrate that intestinal FcαRI-expressing myeloid cells (i.e., monocytes and neutrophils) are in close contact with B lymphocytes in the lamina propria of IBD patients. Furthermore, stimulation of FcαRI-on monocytes triggered production of cytokines and chemokines that regulate B-cell differentiation and migration, including interleukin-6 (IL6), interleukin-10 (IL10), tumour necrosis factor-α (TNFα), a proliferation-inducing ligand (APRIL), and chemokine ligand-20 (CCL20). In vitro, these cytokines promoted IgA isotype switching in human B cells. Moreover, when naïve B lymphocytes were cultured in vitro in the presence of FcαRI-stimulated monocytes, enhanced IgA isotype switching was observed compared to B cells that were cultured with non-stimulated monocytes. Taken together, FcαRI-activated monocytes produced a cocktail of cytokines, as well as chemokines, that stimulated IgA switching in B cells, and close contact between B cells and myeloid cells was observed in the colons of IBD patients. As such, we hypothesize that, in IBD, IgA complexes activate myeloid cells, which in turn can result in excessive IgA production, likely contributing to disease pathology. Interrupting this loop may, therefore, represent a novel therapeutic strategy.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Interleucina-10 , Linfocitos B , Citocinas , Humanos , Inmunoglobulina A , Cambio de Clase de Inmunoglobulina , Isotipos de Inmunoglobulinas , Interleucina-6 , Ligandos , Monocitos , Factor de Necrosis Tumoral alfa
5.
Eur J Immunol ; 52(10): 1662-1675, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36073009

RESUMEN

Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.


Asunto(s)
Ligando de CD40 , FN-kappa B , Linfocitos B/metabolismo , Ligando de CD40/metabolismo , Diferenciación Celular , Centro Germinal , Humanos , FN-kappa B/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
6.
Front Immunol ; 13: 815449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844625

RESUMEN

Background/Methods: For mechanistic studies, in-vitro human B-cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T-cell-dependent (TD) and T-cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols make the interpretation of results challenging. The aim of the present study was to achieve the most optimal B-cell differentiation conditions using isolated CD19+ B cells and peripheral blood mononuclear cell (PBMC) cultures. We addressed multiple seeding densities, different durations of culturing, and various combinations of TD and TI stimuli including B-cell receptor (BCR) triggering. B-cell expansion, proliferation, and differentiation were analyzed after 6 and 9 days by measuring B-cell proliferation and expansion, plasmablast and plasma cell formation, and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B-cells and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2,500 and 25,000 B-cells per culture well for the TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B-cell cultures, which allows dismissal of additional B-cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed a little effect on phenotypic B-cell differentiation; however, it interferes with Ig secretion measurements. The addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B-cell differentiation and Ig secretion in B-cell but not in PBMC cultures. With this approach, efficient B-cell differentiation and Ig secretion were accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more in-depth analysis of B-cell differentiation in primary human B-cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B-cell differentiation of patient samples from different cohorts of B-cell-mediated diseases.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Linfocitos B , Diferenciación Celular , Humanos , Activación de Linfocitos
7.
Front Immunol ; 13: 1082154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591315

RESUMEN

The generation of high-affinity antibodies requires an efficient germinal center (GC) response. As differentiating B cells cycle between GC dark and light zones they encounter different oxygen pressures (pO2). However, it is essentially unknown if and how variations in pO2 affect B cell differentiation, in particular for humans. Using optimized in vitro cultures together with in-depth assessment of B cell phenotype and signaling pathways, we show that oxygen is a critical regulator of human naive B cell differentiation and class switch recombination. Normoxia promotes differentiation into functional antibody secreting cells, while a population of CD27++ B cells was uniquely generated under hypoxia. Moreover, time-dependent transitions between hypoxic and normoxic pO2 during culture - reminiscent of in vivo GC cyclic re-entry - steer different human B cell differentiation trajectories and IgG class switch recombination. Taken together, we identified multiple mechanisms trough which oxygen pressure governs human B cell differentiation.


Asunto(s)
Linfocitos B , Oxígeno , Humanos , Oxígeno/metabolismo , Centro Germinal , Hipoxia/metabolismo , Diferenciación Celular , Inmunoglobulina G
8.
J Immunol ; 207(2): 449-458, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34215657

RESUMEN

Differentiation of Ag-specific B cells into class-switched, high-affinity, Ab-secreting cells provides protection against invading pathogens but is undesired when Abs target self-tissues in autoimmunity, beneficial non-self-blood transfusion products, or therapeutic proteins. Essential T cell factors have been uncovered that regulate T cell-dependent B cell differentiation. We performed a screen using a secreted protein library to identify novel factors that promote this process and may be used to combat undesired Ab formation. We tested the differentiating capacity of 756 secreted proteins on human naive or memory B cell differentiation in a setting with suboptimal T cell help in vitro (suboptimal CD40L and IL-21). High-throughput flow cytometry screening and validation revealed that type I IFNs and soluble FAS ligand (sFASL) induce plasmablast differentiation in memory B cells. Furthermore, sFASL induces robust secretion of IgG1 and IgG4 Abs, indicative of functional plasma cell differentiation. Our data suggest a mechanistic connection between elevated sFASL levels and the induction of autoreactive Abs, providing a potential therapeutic target in autoimmunity. Indeed, the modulators identified in this secretome screen are associated with systemic lupus erythematosus and may also be relevant in other autoimmune diseases and allergy.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Diferenciación Celular/inmunología , Proteína Ligando Fas/inmunología , Memoria Inmunológica/inmunología , Interleucinas/inmunología , Lupus Eritematoso Sistémico/inmunología , Animales , Autoinmunidad/inmunología , Linfocitos B/inmunología , Ligando de CD40/inmunología , Línea Celular , Células HEK293 , Humanos , Activación de Linfocitos/inmunología , Ratones , Células 3T3 NIH , Células Plasmáticas/inmunología , Linfocitos T/inmunología
9.
Cells ; 10(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066151

RESUMEN

High-affinity antibody-secreting cells (ASC) arise from terminal differentiation of B-cells after coordinated interactions with T follicular helper (Tfh) cells in germinal centers (GC). Elucidation of cues promoting human naive B-cells to progress into ASCs is challenging, as this process is notoriously difficult to induce in vitro while maintaining enough cell numbers to investigate the differentiation route(s). Here, we describe a minimalistic in vitro culture system that supports efficient differentiation of human naive B-cells into antibody-secreting cells. Upon initial stimulations, the interplay between level of CD40 costimulation and the Tfh cell-associated cytokines IL-21 and IL-4 determined the magnitude of B-cell expansion, immunoglobulin class-switching and expression of ASC regulator PRDM1. In contrast, the B-cell-specific transcriptional program was maintained, and efficient ASC formation was hampered. Renewed CD40 costimulation and Tfh cytokines exposure induced rapid secondary STAT3 signaling and extensive ASC differentiation, accompanied by repression of B-cell identity factors PAX5, BACH2 and IRF8 and further induction of PRDM1. Our work shows that, like in vivo, renewed CD40L costimulation also induces efficient terminal ASC differentiation after initial B-cell expansion in vitro. This culture system for efficient differentiation of human naive B-cells into ASCs, while also maintaining high cell numbers, may form an important tool in dissecting human naive B-cell differentiation, thereby enabling identification of novel transcriptional regulators and biomarkers for desired and detrimental antibody formation in humans.


Asunto(s)
Anticuerpos/química , Linfocitos B/citología , Células 3T3 , Animales , Formación de Anticuerpos , Antígenos CD40/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica , Centro Germinal/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Técnicas In Vitro , Activación de Linfocitos/inmunología , Ratones , Células 3T3 NIH , Fosforilación , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/citología
10.
Cells ; 9(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302385

RESUMEN

The flow cytometric detection of intracellular (IC) signaling proteins and transcription factors (TFs) will help to elucidate the regulation of B cell survival, proliferation and differentiation. However, the simultaneous detection of signaling proteins or TFs with membrane markers (MMs) can be challenging, as the required fixation and permeabilization procedures can affect the functionality of conjugated antibodies. Here, a phosphoflow method is presented for the detection of activated NF-κB p65 and phosphorylated STAT1, STAT3, STAT5 and STAT6, together with the B cell differentiation MMs CD19, CD27 and CD38. Additionally, a TF-flow method is presented that allows the detection of the B cell TFs PAX5, c-MYC, BCL6 and AID and antibody-secreting cell (ASC) TFs BLIMP1 and XBP-1s, together with MMs. Applying these methods on in vitro-induced human B cell differentiation cultures showed significantly different steady-state levels, and responses to stimulation, of phosphorylated signaling proteins in CD27-expressing B cell and ASC populations. The TF-flow protocol and Uniform Manifold Approximation and Projection (UMAP) analysis revealed heterogeneity in TF expression within stimulated CD27- or CD38-expressing B cell subsets. The methods presented here allow for the sensitive analysis of STAT, NF-κB p65 signaling and TFs, together with B cell differentiation MMs, at single-cell resolution. This will aid the further investigation of B cell responses in both health and disease.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Factores de Transcripción STAT/metabolismo , Factor de Transcripción ReIA/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD19/metabolismo , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Diferenciación Celular , Citometría de Flujo/métodos , Humanos , Fosforilación , Transducción de Señal , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
11.
Immunol Cell Biol ; 96(10): 1083-1094, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29870118

RESUMEN

Plasmacytoid dendritic cells (pDCs) play a critical role in bridging the innate and adaptive immune systems. pDCs are specialized type I interferon (IFN) producers, which has implicated them as initiators of autoimmune pathogenesis. However, little is known about the downstream effectors of type I IFN signaling that amplify autoimmune responses. Here, we have used a chemokine reporter mouse to determine the CXCR3 ligand responses in DCs subsets. Following TLR7 stimulation, conventional type 1 and type 2 DCs (cDC1 and cDC2, respectively) uniformly upregulate CXCL10. By contrast, the proportion of chemokine positive pDCs was significantly less, and stable CXCL10+ and CXCL10- populations could be distinguished. CXCL9 expression was induced in all cDC1s, in half of the cDC2 but not by pDCs. The requirement for IFNAR signaling for chemokine reporter expression was interrogated by receptor blocking and deficiency and shown to be critical for CXCR3 ligand expression in Flt3-ligand-derived DCs. Chemokine-producing potential was not concordant with the previously identified markers of pDC heterogeneity. Finally, we show that CXCL10+ and CXCL10- populations are transcriptionally distinct, expressing unique transcriptional regulators, IFN signaling molecules, chemokines, cytokines, and cell surface markers. This work highlights CXCL10 as a downstream effector of type I IFN signaling and suggests a division of labor in pDCs subtypes that likely impacts their function as effectors of viral responses and as drivers of inflammation.


Asunto(s)
Quimiocina CXCL10/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Receptor Toll-Like 7/agonistas , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Células Cultivadas , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Perfilación de la Expresión Génica , Inmunofenotipificación , Interferón Tipo I/metabolismo , Ratones , Receptores CXCR3/metabolismo , Transducción de Señal
13.
Cell Mol Life Sci ; 74(4): 715-730, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27628304

RESUMEN

P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the ß-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Adenosina Trifosfatasas/inmunología , Endocitosis , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , FN-kappa B/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...