Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(41): 8736-8748, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37791815

RESUMEN

Adrenaline acts on ß1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 µs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.


Asunto(s)
Simulación de Dinámica Molecular , Troponina I , Fosforilación , Troponina I/genética , Troponina I/metabolismo , Mutación , Miocardio/metabolismo , Péptidos/metabolismo , Calcio/metabolismo
2.
Arch Biochem Biophys ; 725: 109282, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577070

RESUMEN

Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.


Asunto(s)
Tropomiosina , Troponina I , Actinas/metabolismo , Calcio/metabolismo , Simulación de Dinámica Molecular , Péptidos/metabolismo , Tropomiosina/química , Troponina C/metabolismo , Troponina I/química
3.
Cardiovasc Res ; 118(1): 241-253, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33135063

RESUMEN

AIMS: Dilated cardiomyopathy (DCM) is associated with mutations in many genes encoding sarcomere proteins. Truncating mutations in the titin gene TTN are the most frequent. Proteomic and functional characterizations are required to elucidate the origin of the disease and the pathogenic mechanisms of TTN-truncating variants. METHODS AND RESULTS: We isolated myofibrils from DCM hearts carrying truncating TTN mutations and measured the Ca2+ sensitivity of force and its length dependence. Simultaneous measurement of force and adenosine triphosphate (ATP) consumption in skinned cardiomyocytes was also performed. Phosphorylation levels of troponin I (TnI) and myosin binding protein-C (MyBP-C) were manipulated using protein kinase A and λ phosphatase. mRNA sequencing was employed to overview gene expression profiles. We found that Ca2+ sensitivity of myofibrils carrying TTN mutations was significantly higher than in myofibrils from donor hearts. The length dependence of the Ca2+ sensitivity was absent in DCM myofibrils with TTN-truncating variants. No significant difference was found in the expression level of TTN mRNA between the DCM and donor groups. TTN exon usage and splicing were also similar. However, we identified down-regulation of genes encoding Z-disk proteins, while the atrial-specific regulatory myosin light chain gene, MYL7, was up-regulated in DCM patients with TTN-truncating variants. CONCLUSION: Titin-truncating mutations lead to decreased length-dependent activation and increased elasticity of myofibrils. Phosphorylation levels of TnI and MyBP-C seen in the left ventricles are essential for the length-dependent changes in Ca2+ sensitivity in healthy donors, but they are reduced in DCM patients with TTN-truncating variants. A decrease in expression of Z-disk proteins may explain the observed decrease in myofibril passive stiffness and length-dependent activation.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Proteínas Portadoras/metabolismo , Conectina/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Troponina I/metabolismo , Adulto , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Conectina/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Cinética , Masculino , Persona de Mediana Edad , Mutación , Miofibrillas/patología , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Virales/metabolismo , Adulto Joven
4.
Proc Natl Acad Sci U S A ; 117(40): 24691-24700, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968017

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas/genética , Sarcómeros/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Genotipo , Humanos , Espectrometría de Masas , Miocardio/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteómica , Sarcómeros/genética , Transducción de Señal
5.
Front Physiol ; 11: 612, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733259

RESUMEN

The measurement of the contractile behavior of single cardiomyocytes has made a significant contribution to our understanding of the physiology and pathophysiology of the myocardium. However, the isolation of cardiomyocytes introduces various technical and statistical issues. Traditional video and fluorescence microscopy techniques based around conventional microscopy systems result in low-throughput experimental studies, in which single cells are studied over the course of a pharmacological or physiological intervention. We describe a new approach to these experiments made possible with a new piece of instrumentation, the CytoCypher High-Throughput System (CC-HTS). We can assess the shortening of sarcomeres, cell length, Ca2+ handling, and cellular morphology of almost 4 cells per minute. This increase in productivity means that batch-to-batch variation can be identified as a major source of variability. The speed of acquisition means that sufficient numbers of cells in each preparation can be assessed for multiple conditions reducing these batch effects. We demonstrate the different temporal scales over which the CC-HTS can acquire data. We use statistical analysis methods that compensate for the hierarchical effects of clustering within heart preparations and demonstrate a significant false-positive rate, which is potentially present in conventional studies. We demonstrate a more stringent way to perform these tests. The baseline morphological and functional characteristics of rat, mouse, guinea pig, and human cells are explored. Finally, we show data from concentration response experiments revealing the usefulness of the CC-HTS in such studies. We specifically focus on the effects of agents that directly or indirectly affect the activity of the motor proteins involved in the production of cardiomyocyte contraction. A variety of myocardial preparations with differing levels of complexity are in use (e.g., isolated muscle bundles, thin slices, perfused dual innervated isolated heart, and perfused ventricular wedge). All suffer from low throughput but can be regarded as providing independent data points in contrast to the clustering problems associated with isolated cell studies. The greater productivity and sampling power provided by CC-HTS may help to reestablish the utility of isolated cell studies, while preserving the unique insights provided by studying the contribution of the fundamental, cellular unit of myocardial contractility.

7.
J Gen Physiol ; 151(1): 18-29, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30578328

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (k ACT) and the rate constant of isometric relaxation (slow k REL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces k ACT, slow k REL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases k ACT, slow k REL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Mutación/genética , Troponina T/genética , Adulto , Calcio/metabolismo , Humanos , Cinética , Masculino , Relajación Muscular/genética , Miofibrillas/genética , Sarcómeros/genética
9.
Front Physiol ; 9: 243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636697

RESUMEN

The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19) compared to 2.0 ± 0.24-fold (n = 7) in wild-type thin filaments. Many of these compounds were either pure re-couplers or pure desensitizers, indicating these properties are independent; moreover, re-coupling ability could be lost with small changes of compound structure, indicating the possibility of specificity. Small molecules that can re-couple may have therapeutic potential. HIGHLIGHTS - Inherited cardiomyopathies are common diseases that are currently untreatable at a fundamental level and therefore finding a small molecule treatment is highly desirable.- We have identified a molecular level dysfunction common to nearly all mutations: uncoupling of the relationship between troponin I phosphorylation and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline.- We have identified a new class of drugs that are capable of both reducing Ca2+-sensitivity and/or recouping the relationship between troponin I phosphorylation and Ca2+-sensitivity.- The re-coupling phenomenon can be explained on the basis of a single mechanism that is testable.- Measurements with a wide range of small molecules of varying structures can indicate the critical molecular features required for recoupling and allows the prediction of other potential re-couplers.

10.
Biophys J ; 113(11): 2444-2451, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29211998

RESUMEN

Elongated tropomyosin, associated with actin-subunits along the surface of thin filaments, makes electrostatic interactions with clusters of conserved residues, K326, K328, and R147, on actin. The association is weak, permitting low-energy cost regulatory movement of tropomyosin across the filament during muscle activation. Interestingly, acidic D292 on actin, also evolutionarily conserved, lies adjacent to the three-residue cluster of basic amino acids and thus may moderate the combined local positive charge, diminishing tropomyosin-actin interaction and facilitating regulatory-switching. Indeed, charge neutralization of D292 is connected to muscle hypotonia in individuals with D292V actin mutations and linked to congenital fiber-type disproportion. Here, the D292V mutation may predispose tropomyosin-actin positioning to a myosin-blocking state, aberrantly favoring muscle relaxation, thus mimicking the low-Ca2+ effect of troponin even in activated muscles. To test this hypothesis, interaction energetics and in vitro function of wild-type and D292V filaments were measured. Energy landscapes based on F-actin-tropomyosin models show the mutation localizes tropomyosin in a blocked-state position on actin defined by a deeper energy minimum, consistent with augmented steric-interference of actin-myosin binding. In addition, whereas myosin-dependent motility of troponin/tropomyosin-free D292V F-actin is normal, motility is dramatically inhibited after addition of tropomyosin to the mutant actin. Thus, D292V-induced blocked-state stabilization appears to disrupt the delicately poised energy balance governing thin filament regulation. Our results validate the premise that stereospecific but necessarily weak binding of tropomyosin to F-actin is required for effective thin filament function.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tropomiosina/metabolismo , Actinas/química , Actinas/genética , Calcio/metabolismo , Humanos , Modelos Moleculares , Mutación , Miosinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Electricidad Estática , Termodinámica
11.
Sci Rep ; 7(1): 14829, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093449

RESUMEN

Dilated cardiomyopathy (DCM) is an important cause of heart failure. Single gene mutations in at least 50 genes have been proposed to account for 25-50% of DCM cases and up to 25% of inherited DCM has been attributed to truncating mutations in the sarcomeric structural protein titin (TTNtv). Whilst the primary molecular mechanism of some DCM-associated mutations in the contractile apparatus has been studied in vitro and in transgenic mice, the contractile defect in human heart muscle has not been studied. In this study we isolated cardiac myofibrils from 3 TTNtv mutants, and 3 with contractile protein mutations (TNNI3 K36Q, TNNC1 G159D and MYH7 E1426K) and measured their contractility and passive stiffness in comparison with donor heart muscle as a control. We found that the three contractile protein mutations but not the TTNtv mutations had faster relaxation kinetics. Passive stiffness was reduced about 38% in all the DCM mutant samples. However, there was no change in maximum force or the titin N2BA/N2B isoform ratio and there was no titin haploinsufficiency. The decrease in myofibril passive stiffness was a common feature in all hearts with DCM-associated mutations and may be causative of DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Conectina/genética , Mutación , Miofibrillas/patología , Fenómenos Biomecánicos , Cardiomiopatía Dilatada/fisiopatología , Corazón/fisiopatología , Humanos , Contracción Miocárdica , Miofibrillas/genética , Mutación Puntual
12.
Am J Physiol Heart Circ Physiol ; 313(6): H1213-H1226, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887330

RESUMEN

Patients with hypertrophic cardiomyopathy, particularly young adults, can die from arrhythmia, but the mechanism underlying abnormal rhythm formation remains unknown. C57Bl6 × CBA/Ca mice carrying a cardiac actin ( ACTC) E99K (Glu99Lys) mutation reproduce many aspects of human hypertrophic cardiomyopathy, including increased myofilament Ca2+ sensitivity and sudden death in a proportion (up to 40%) of young (28-40 day old) animals. We studied the hearts of transgenic (TG; ACTC E99K) mice and their non-TG (NTG) littermates when they were in their vulnerable period (28-40 days old) and when they were adult (8-12 wk old). Ventricular myocytes were isolated from the hearts of TG and NTG mice at these two time points. We also examined the hearts of mice that died suddenly (SCD). SCD animals had approximately four times more collagen compared with age-matched NTG mice, yet myocyte cell size was normal. Young TG mice had double the collagen content of NTG mice. Contraction and Ca2+ transients were greater in cells from young TG mice compared with their NTG littermates but not in cells from adult mice (TG or NTG). Cells from young TG mice had a greater propensity for Ca2+ waves than NTG littermates, and, despite similar sarcoplasmic reticulum Ca2+ content, a proportion of these cells had larger Ca2+ spark mass. We found that the probability of SCD in young TG mice was increased when the mutation was expressed in animals with a CBA/Ca2+ background and almost eliminated in mice bred on a C57Bl6 background. The latter TG mice had normal cellular Ca2+ homeostasis. NEW & NOTEWORTHY Mice with the actin Glu99Lys hypertrophic cardiomyopathy mutation ( ACTC E99K) are prone to sudden cardiac death around 40 days, associated with increased Ca2+ transients, spark mass, and fibrosis. However, adult survivors have normal Ca2+ transients and spark density accompanied by hypertrophy. Penetrance of the sudden cardiac death phenotype depends on the genetic background of the mouse. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/calcium-regulation-in-e99k-mouse-heart/ .


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica/metabolismo , Muerte Súbita Cardíaca , Antecedentes Genéticos , Actinas/genética , Factores de Edad , Animales , Cardiomiopatía Hipertrófica/genética , Células Cultivadas , Colágeno/metabolismo , Corazón/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mutación Missense , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
13.
Front Physiol ; 8: 348, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642712

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20-44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 µM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model.

14.
Front Physiol ; 7: 508, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853436

RESUMEN

Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle it is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of heart activation, the modulation of Ca2+-sensitivity by phosphorylation of the cardiac specific N-terminal segment of TnI (1-30) is structurally subtle and has proven hard to investigate. The crystal structure of cardiac troponin describes only the relatively stable core of the molecule and the crucial mobile parts of the molecule are missing including TnI C-terminal region, TnI (1-30), TnI (134-149) ("inhibitory" peptide) and the C-terminal 28 amino acids of TnT that are intrinsically disordered. Recent studies have been performed to answer this matter by building structural models of cardiac troponin in phosphorylated and dephosphorylated states based on peptide NMR studies. Now these have been updated by more recent concepts derived from molecular dynamic simulations treating troponin as a dynamic structure. The emerging model confirms the stable core structure of troponin and the mobile structure of the intrinsically disordered segments. We will discuss how we can describe these segments in terms of dynamic transitions between a small number of states, with the probability distributions being altered by phosphorylation and by HCM or DCM-related mutations that can explain how Ca2+-sensitivity is modulated by phosphorylation and the effects of mutations.

15.
Front Physiol ; 7: 415, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27725803

RESUMEN

Mutations in striated muscle contractile proteins have been found to be the cause of a number of inherited muscle diseases; in most cases the mechanism proposed for causing the disease is derangement of the thin filament-based Ca2+-regulatory system of the muscle. When considering the results of experiments reported over the last 15 years, one feature has been frequently noted, but rarely discussed: the magnitude of changes in myofilament Ca2+-sensitivity due to myopathy-causing mutations in skeletal or heart muscle seems to be always in the range 1.5-3x EC50. Such consistency suggests it may be related to a fundamental property of muscle regulation; in this article we will investigate whether this observation is true and consider why this should be so. A literature search found 71 independent measurements of HCM mutation-induced change of EC50 ranging from 1.15 to 3.8-fold with a mean of 1.87 ± 0.07 (sem). We also found 11 independent measurements of increased Ca2+-sensitivity due to mutations in skeletal muscle proteins ranging from 1.19 to 2.7-fold with a mean of 2.00 ± 0.16. Investigation of dilated cardiomyopathy-related mutations found 42 independent determinations with a range of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14 measurements of Ca2+-sensitivity changes due skeletal muscle myopathy mutations ranging from 0.39 to 0.63. Thus, our extensive literature search, although not necessarily complete, found that, indeed, the changes in myofilament Ca2+-sensitivity due to disease-causing mutations have a bimodal distribution and that the overall changes in Ca2+-sensitivity are quite small and do not extend beyond a three-fold increase or decrease in Ca2+-sensitivity. We discuss two mechanism that are not necessarily mutually exclusive. Firstly, it could be that the limit is set by the capabilities of the excitation-contraction machinery that supplies activating Ca2+ and that striated muscle cannot work in a way compatible with life outside these limits; or it may be due to a fundamental property of the troponin system and the permitted conformational transitions compatible with efficient regulation.

16.
Phys Chem Chem Phys ; 18(30): 20691-707, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27412261

RESUMEN

The only available crystal structure of the human cardiac troponin molecule (cTn) in the Ca(2+) activated state does not include crucial segments, including the N-terminus of the cTn inhibitory subunit (cTnI). We have applied all-atom molecular dynamics (MD) simulations to study the structure and dynamics of cTn, both in the unphosphorylated and bis-phosphorylated states at Ser23/Ser24 of cTnI. We performed multiple microsecond MD simulations of wild type (WT) cTn (6, 5 µs) and bisphosphorylated (SP23/SP24) cTn (9 µs) on a 419 amino acid cTn model containing human sequence cTnC (1-161), cTnI (1-171) and cTnT (212-298), including residues not present in the crystal structure. We have compared our results to previous computational studies, and proven that longer simulations and a water box of at least 25 Å are needed to sample the interesting conformational shifts both in the native and bis-phosphorylated states. As a consequence of the introduction into the model of the C-terminus of cTnT that was missing in previous studies, cTnC-cTnI interactions that are responsible for the cTn dynamics are altered. We have also shown that phosphorylation does not increase cTn fluctuations, and its effects on the protein-protein interaction profiles cannot be assessed in a significant way. Finally, we propose that phosphorylation could provoke a loss of Ca(2+) by stabilizing out-of-coordination distances of the cTnC's EF hand II residues, and in particular Ser 69.


Asunto(s)
Calcio , Troponina I/química , Humanos , Simulación de Dinámica Molecular , Fosforilación
17.
Am J Physiol Heart Circ Physiol ; 311(2): H465-75, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233767

RESUMEN

Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae.


Asunto(s)
Proteínas Portadoras/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Sarcómeros/metabolismo , Adaptación Fisiológica , Animales , Vasos Coronarios/cirugía , Ligadura , Masculino , Microscopía Confocal , Microscopía Electrónica , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Fosforilación , Ratas , Ratas Sprague-Dawley , Sarcómeros/fisiología , Sarcómeros/ultraestructura
18.
MethodsX ; 3: 156-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047763

RESUMEN

Many causes of heart muscle diseases and skeletal muscle diseases are inherited and caused by mutations in genes of sarcomere proteins which play either a structural or contractile role in the muscle cell. Tissue samples from human hearts with mutations can be obtained but often samples are only a few milligrams and it is necessary to freeze them for storage and transportation. Myofibrils are the fundamental contractile components of the muscle cell and retain all structural elements and contractile proteins performing in contractile event; moreover viable myofibrils can be obtained from frozen tissue.•We are describing a versatile technique for measuring the contractility and its Ca(2+) regulation in single myofibrils. The control of myofibril length, incubation medium and data acquisition is carried out using a digital acquisition board via computer software. Using computer control it is possible not only to measure contractile and mechanical parameters but also simulate complex protocols such as a cardiac cycle to vary length and medium independently.•This single myofibril force assay is well suited for physiological measurements. The system can be adapted to measure tension amplitude, rates of contraction and relaxation, Ca(2+) dependence of these parameters in dose-response measurements, length-dependent activation, stretch response, myofibril elasticity and response to simulated cardiac cycle length changes. Our approach provides an all-round quantitative way to measure myofibrils performance and to observe the effect of mutations or posttranslational modifications. The technique has been demonstrated by the study of contraction in heart with hypertrophic or dilated cardiomyopathy mutations in sarcomere proteins.

19.
Arch Biochem Biophys ; 601: 113-20, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036851

RESUMEN

We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.


Asunto(s)
Calcio/química , Cardiomiopatía Hipertrófica/genética , Mutación , Troponina I/química , Troponina T/genética , Citoesqueleto de Actina/metabolismo , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Catequina/análogos & derivados , Catequina/química , Relación Dosis-Respuesta a Droga , Corazón/fisiología , Humanos , Ratones , Ratones Transgénicos , Contracción Miocárdica , Fosforilación , Proteínas Recombinantes/química
20.
Cardiovasc Res ; 108(1): 99-110, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109583

RESUMEN

AIMS: Heart muscle contraction is regulated via the ß-adrenergic response that leads to phosphorylation of Troponin I (TnI) at Ser22/23, which changes the Ca(2+) sensitivity of the cardiac myofilament. Mutations in thin filament proteins that cause dilated cardiomyopathy (DCM) and some mutations that cause hypertrophic cardiomyopathy (HCM) abolish the relationship between TnI phosphorylation and Ca(2+) sensitivity (uncoupling). Small molecule Ca(2+) sensitizers and Ca(2+) desensitizers that act upon troponin alter the Ca(2+) sensitivity of the thin filament, but their relationship with TnI phosphorylation has never been studied before. METHODS AND RESULTS: Quantitative in vitro motility assay showed that 30 µM EMD57033 and 100 µM Bepridil increase Ca(2+) sensitivity of phosphorylated cardiac thin filaments by 3.1- and 2.8-fold, respectively. Additionally they uncoupled Ca(2+) sensitivity from TnI phosphorylation, mimicking the effect of HCM mutations. Epigallocatechin-3-gallate (EGCG) decreased Ca(2+) sensitivity of phosphorylated and unphosphorylated wild-type thin filaments equally (by 2.15 ± 0.45- and 2.80 ± 0.48-fold, respectively), retaining the coupling. Moreover, EGCG also reduced Ca(2+) sensitivity of phosphorylated but not unphosphorylated thin filaments containing DCM and HCM-causing mutations; thus, the dependence of Ca(2+) sensitivity upon TnI phosphorylation of uncoupled mutant thin filaments was restored in every case. In single mouse heart myofibrils, EGCG reduced Ca(2+) sensitivity of force and kACT and also preserved coupling. Myofibrils from the ACTC E361G (DCM) mouse were uncoupled; EGCG reduced Ca(2+) sensitivity more for phosphorylated than for unphosphorylated myofibrils, thus restoring coupling. CONCLUSION: We conclude that it is possible to both mimic and reverse the pathological defects in troponin caused by cardiomyopathy mutations pharmacologically. Re-coupling by EGCG may be of potential therapeutic significance for treating cardiomyopathies.


Asunto(s)
Calcio/metabolismo , Catequina/análogos & derivados , Miofibrillas/metabolismo , Troponina I/metabolismo , Animales , Bepridil/farmacología , Catequina/farmacología , Humanos , Ratones , Contracción Muscular/efectos de los fármacos , Mutación , Fosforilación , Quinolinas/farmacología , Conejos , Tiadiazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...