Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 110(5): e16155, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912727

RESUMEN

PREMISE: Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS: We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS: We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS: The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.


Asunto(s)
Cistaceae , Magnoliopsida , Filogenia , Fitomejoramiento , Magnoliopsida/genética , Geografía
2.
Ann Bot ; 131(4): 667-684, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36594263

RESUMEN

BACKGROUND AND AIMS: The Canary Islands have strong floristic affinities with the Mediterranean Basin. One of the most characteristic and diverse vegetation belts of the archipelago is the thermophilous woodland (between 200 and 900 m.a.s.l.). This thermophilous plant community consists of many non-endemic species shared with the Mediterranean Floristic Region together with Canarian endemic species. Consequently, phytogeographic studies have historically proposed the hypothesis of an origin of the Canarian thermophilous species following the establishment of the summer-dry mediterranean climate in the Mediterranean Basin around 2.8 million years ago. METHODS: Time-calibrated phylogenies for 39 plant groups including Canarian thermophilous species were primarily analysed to infer colonization times. In particular, we used 26 previously published phylogenies together with 13 new time-calibrated phylogenies (including newly generated plastid and nuclear DNA sequence data) to assess whether the time interval between stem and crown ages of Canarian thermophilous lineages postdates 2.8 Ma. For lineages postdating this time threshold, we additionally conducted ancestral area reconstructions to infer the potential source area for colonization. KEY RESULTS: A total of 43 Canarian thermophilous lineages were identified from 39 plant groups. Both mediterranean (16) and pre-mediterranean (9) plant lineages were found. However, we failed to determine the temporal origin for 18 lineages because a stem-crown time interval overlaps with the 2.8-Ma threshold. The spatial origin of thermophilous lineages was also heterogeneous, including ancestral areas from the Mediterranean Basin (nine) and other regions (six). CONCLUSIONS: Our findings reveal an unexpectedly heterogeneous origin of the Canarian thermophilous species in terms of colonization times and mainland source areas. A substantial proportion of the lineages arrived in the Canaries before the summer-dry climate was established in the Mediterranean Basin. The complex temporal and geographic origin of Canarian thermophilous species challenges the view of the Canary Islands (and Madeira) as a subregion within the Mediterranean Floristic Region.


Asunto(s)
Clima , Filogenia , España , Región Mediterránea
3.
Mol Phylogenet Evol ; 163: 107238, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197899

RESUMEN

The biogeographic history and the degree of environmental niche conservatism provide essential clues to decipher the underlying macroevolutionary processes of species diversification and to understand contemporary patterns of biodiversity. The genus Helianthemum constitutes an excellent case study to investigate the impact of the geo-climatic changes and the environmental niche shifts on the origins of plant species diversity in the Mediterranean hotspot. It is a palearctic species-rich lineage with c. 140 species and subspecies mostly belonging to three distinct evolutionary radiations, almost confined to the Mediterranean region and occurring across varied environmental conditions. In this work, we studied the ample and rapid diversification of the genus Helianthemum across its whole distribution range by performing phylogenetic reconstructions of ancestral ranges and environmental niche evolution. We observed a striking synchrony of biogeographic movements with niche shifts between the three major clades of the genus Helianthemum, likely related to the geo-climatic events occurred in the Mediterranean Basin since the Upper Miocene. In particular, Late Miocene and Early Pliocene were dominated by episodes of range expansions, the Late Pliocene by range contraction and vicariance events, and Pleistocene by most intense environmental niche shifts and in-situ diversification. Our study also provides evidence for four main environmental niches in Helianthemum (i.e., Mediterranean, subdesert, humid-montane and subtropical-insular) and a tendency toward environmental niche conservatism within different subclades, with few niche shifts mostly occurring from Mediterranean ancestors. The relative longer time spent in Mediterranean areas by the ancestors of Helianthemum suggests that the larger species diversity observed in the Mediterranean (i.e. Northern Africa and Southern Europe) may have been generated by a time-for-speciation effect reinforced by environmental niche conservatism. Overall, our work highlights the role of the Mediterranean Basin as a 'cradle of diversity' and an 'evolutionary hub', facilitating the environmental transitions and determining the building up of a global plant biodiversity hotspot.


Asunto(s)
Evolución Biológica , Cistaceae , Ecosistema , Región Mediterránea , Filogenia
4.
Ann Bot ; 127(5): 597-611, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32386290

RESUMEN

BACKGROUND AND AIMS: Several biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae). METHODS: We performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade. KEY RESULTS: Our phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor. CONCLUSIONS: The rapid and abundant diversification (0.75-1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.


Asunto(s)
Cistaceae , Ecosistema , Genotipo , Islas , Filogenia , España
5.
Front Plant Sci ; 10: 1416, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781140

RESUMEN

A robust phylogenetic framework, in terms of extensive geographical and taxonomic sampling, well-resolved species relationships and high certainty of tree topologies and branch length estimations, is critical in the study of macroevolutionary patterns. Whereas Sanger sequencing-based methods usually recover insufficient phylogenetic signal, especially in recently diversified lineages, reduced-representation sequencing methods tend to provide well-supported phylogenetic relationships, but usually entail remarkable bioinformatic challenges due to the inherent trade-off between the number of SNPs and the magnitude of associated error rates. The genus Helianthemum (Cistaceae) is a species-rich and taxonomically complex Palearctic group of plants that diversified mainly since the Upper Miocene. It is a challenging case study since previous attempts using Sanger sequencing were unable to resolve the intrageneric phylogenetic relationships. Aiming to obtain a robust phylogenetic reconstruction based on genotyping-by-sequencing (GBS), we established a rigorous methodological workflow in which we i) explored how variable settings during dataset assembly have an impact on error rates and on the degree of resolution under concatenation and coalescent approaches, ii) assessed the effect of two extreme parameter configurations (minimizing error rates vs. maximizing phylogenetic resolution) on tree topology and branch lengths, and iii) evaluated the effects of these two configurations on estimates of divergence times and diversification rates. Our analyses produced highly supported topologically congruent phylogenetic trees for both configurations. However, minimizing error rates did produce more reliable branch lengths, critically affecting the accuracy of downstream analyses (i.e. divergence times and diversification rates). In addition to recommending a revision of intrageneric systematics, our results enabled us to identify three highly diversified lineages in Helianthemum in contrasting geographical areas and ecological conditions, which started radiating in the Upper Miocene.

6.
Ecol Evol ; 9(6): 3016-3029, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962878

RESUMEN

Unraveling the relationships between ecological, functional traits and genetic diversity of narrow endemic plants provide opportunities for understanding how evolutionary processes operate over local spatial scales and ultimately how diversity is created and maintained. To explore these aspects in Sierra Nevada, the core of the Mediterranean Betic-Rifean hotspot, we have analyzed nuclear DNA microsatellite diversity and a set of biological and environmental factors (physicochemical soil parameters, floral traits, and community composition) in two strictly endemic taxa from dolomite outcrops of Sierra Nevada (Helianthemum pannosum and H. apenninum subsp. estevei) and two congeneric widespread taxa (H. cinereum subsp. rotundifolium and H. apenninum subsp. apenninum) that further belong to two different lineages (subgenera) of Helianthemum. We obtained rather unexpected results contrasting with the theory: (a) The narrow endemic taxa showed higher values of genetic diversity as well as higher average values of pollen production per flower and pollen-to-ovule ratio than their widespread relatives; and (b) the two taxa of subg. Helianthemum, with larger corollas, approach herkogamy and higher pollen production than the two taxa of subg. Plectolobum, displayed lower genetic diversity and higher values of inbreeding. Altogether, these results disclose how genetic diversity may be affected simultaneously by a large number of intrinsic and extrinsic factors, especially in Pleistocene glacial refugia in mountains where the spatial context harbors a great ecological heterogeneity. On the other hand, differences in mating system and the significant effect of the substrate profile, both being highly diverse in the genus Helianthemum, in the genetic variability illustrate about the importance of these two factors in the diversification and species differentiation of this paradigmatic genus in the Mediterranean and open the field to formulate and test new hypotheses of local adaptation, trait evolution, and habitat diversification.

7.
PLoS One ; 12(3): e0173840, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28273156

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0159484.].

8.
PLoS One ; 11(7): e0159484, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27463521

RESUMEN

Integration of unexpected discoveries about charismatic species can disrupt their well-established recovery plans, particularly when this requires coordinate actions among the different governments responsible. The Critically Endangered Coronopus navasii (Brassicaceae) was considered a restricted endemism to a few Mediterranean temporary ponds in a high mountain range of Southeast Spain, until a new group of populations were discovered 500 km North in 2006. Ten years after this finding, its management has not been accommodated due to limited information of the new populations and administrative inertia. In this study, DNA sequences and species distribution models are used to analyse the origin of the C. navasii disjunction as a preliminary step to reassess its recovery plan. Molecular results placed the disjunction during Miocene-Pleistocene (6.30-0.49 Mya, plastid DNA; 1.45-0.03 Mya, ribosomal DNA), which discards a putative human-mediated origin. In fact, the haplotype network and the low gene flow estimated between disjunct areas suggest long-term isolation. Dispersal is the most likely explanation for the disjunction as interpreted from the highly fragmented distribution projected to the past. Particularly, a northward dispersal from Southeast is proposed since C. navasii haplotype network is connected to the sister-group through the southern haplotype. Although the reassessment of C. navasii conservation status is more optimistic under the new extent of occurrence, its long-term survival may be compromised due to the: (1) natural fragmentation and rarity of the species habitat, (2) genetic isolation between the two disjunct areas, and (3) northward shift of suitable areas under future climate change scenarios. Several ex-situ and in-situ conservation measures are proposed for integrating Central East Spanish populations into the on-going recovery plan, which still only contemplates Southeast populations and therefore does not preserve the genetic structure and diversity of the species.


Asunto(s)
Brassicaceae , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Brassicaceae/genética , ADN de Plantas/genética , Haplotipos , Modelos Teóricos , Filogeografía , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA