Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 299: 122631, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31902639

RESUMEN

Over the last years, an increasing concern has emerged regarding the eco-friendly management of wastewater. Apart from the role of wastewater treatment plants (WWTPs) for wastewater and sewage sludge treatment, the increasing need of the recovery of the resources contained in wastewater, such as nutrients and water, should be highlighted. This would allow for transforming a wastewater treatment plant (WWTP) into a sustainable technological system. The objective of this review is to propose a moving bed biofilm reactor (MBBR) as a novel technology that contributes to the circularity of the wastewater treatment sector according to the principles of circular economy. In this regard, this paper aims to consider the MBBR process as the initial step for water reuse, and nutrient removal and recovery, within the circular economy model.


Asunto(s)
Biopelículas , Aguas Residuales , Reactores Biológicos , Nutrientes , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
2.
Sci Total Environ ; 708: 135104, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31787301

RESUMEN

This research was performed to assess the production of reclaimed water from urban wastewater in membrane bioreactor - advanced oxidation process (MBR-AOP) and moving bed biofilm reactor - membrane bioreactor - advanced oxidation process (MBBR-MBR-AOP) combined treatments to study the effect of biofilm incorporation. Both combined treatments were operated at the same conditions (10 h of hydraulic retention time, 6500 mg/L of mixed liquor suspended solids and 25 mg/L of hydrogen peroxide dosage over 15 min). Additionally, the removal capacity of some pharmaceuticals (carbamazepine, ciprofloxacin and ibuprofen) and their impact on the kinetic behaviour of the biomass in both systems were evaluated. From the results, it was found a membrane-based bioreactor can achieve both wastewater secondary treatment and pre-treatment for advanced oxidation process, so both MBR-AOP and MBBR-MBR-AOP treatments have a great potential to produce high quality reclaimed water (biological oxygen demand <0.5 mgO2/L, suspended solids <1 mg/L, turbidity <1 NTU and no presence of E. coli), according to European Commission proposal 2018/0169/COD. The addition of carriers improved the biodegradation of the most persistent pharmaceuticals in the biological treatment (from 69.20 ± 1.54% to 75.14 ± 2.71% for carbamazepine and from 60.41 ± 2.16 to 63.14 ± 2.70% for ciprofloxacin). It had, as a consequence, the MBBR-MBR-AOP system showing a complete degradation of pharmaceuticals after 5 min AOP treatment compared to the MBR-AOP system. The loss of biomass in the MBR-AOP (from 5233.45 to 4451.92 mg/L) and the increase of the substrate degradation rate for organic matter in both treatments (from 37.27 to 41.42 and from 30.25 to 33.19 mgO2/(L·h) in MBR-AOP and MBBR-MBR-AOP, respectively) are some of the consequences of pharmaceuticals in urban wastewater.


Asunto(s)
Reactores Biológicos , Purificación del Agua , Biopelículas , Escherichia coli , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales , Calidad del Agua
3.
Water Sci Technol ; 77(1-2): 448-455, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29377829

RESUMEN

The start-up phase of a membrane bioreactor (MBR) for municipal wastewater treatment was studied to determine the effect of temperature on the organic matter removal and heterotrophic kinetics. The MBR system was analyzed during four start-up phases with values of hydraulic retention time (HRT) of 6 h and 10 h, mixed liquor suspended solids (MLSS) concentrations of 4,000 mg L-1 and 7,000 mg L-1 in the steady state, and temperature values of 11.5, 14.2, 22.9 and 30.1 °C. The influence of temperature on the biological process of organic matter removal was determined through the Arrhenius equation and Monod model. At the most favorable operation conditions of HRT (10 h) and MLSS (7,000 mg L-1) corresponding to phase 4, the effect of these variables dominated over the temperature. Heterotrophic biomass from phase 2 (HRT = 10 h, MLSS = 4,000 mg L-1 and T = 30.1 °C) had the highest values of chemical oxygen demand (COD) degradation rate (rsu,H), implying less time to remove organic matter and shorter duration of the start-up phase.


Asunto(s)
Reactores Biológicos/microbiología , Membranas Artificiales , Modelos Teóricos , Temperatura , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Cinética , Aguas del Alcantarillado/química , Aguas Residuales/química
4.
Water Res ; 88: 796-807, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26599433

RESUMEN

Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Reactores Biológicos , Membranas Artificiales , Análisis Multivariante , Filogenia
5.
Artículo en Inglés | MEDLINE | ID: mdl-22755522

RESUMEN

At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: ß-Proteobacteria, α-Proteobacteria, and Actinobacteria.


Asunto(s)
Biopelículas , Reactores Biológicos/microbiología , Electrocoagulación/métodos , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA