Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 10: 747, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275332

RESUMEN

Leaf senescence is characterized by massive degradation of chloroplast proteins, yet the protease(s) involved is(are) not completely known. Increased expression and/or activities of serine, cysteine, aspartic, and metalloproteases were detected in senescing leaves, but these studies have not provided information on the identities of the proteases responsible for chloroplast protein breakdown. Silencing some senescence-associated proteases has delayed progression of senescence symptoms, yet it is still unclear if these proteases are directly involved in chloroplast protein breakdown. At least four cellular pathways involved in the traffic of chloroplast proteins for degradation outside the chloroplast have been described (i.e., "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles"), which differ in their dependence on the autophagic machinery, and the identity of the proteins transported and/or degraded. Finding out the proteases involved in, for example, the degradation of Rubisco, may require piling up mutations in several senescence-associated proteases. Alternatively, targeting a proteinaceous protein inhibitor to chloroplasts may allow the inhibitor to reach "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles" in essentially the way as chloroplast-targeted fluorescent proteins re-localize to these vesicular structures. This might help to reduce proteolytic activity, thereby reducing or slowing down plastid protein degradation during senescence.

2.
Front Plant Sci ; 10: 1635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31969890

RESUMEN

The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.

3.
J Biol Res (Thessalon) ; 25: 15, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30116723

RESUMEN

BACKGROUND: The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. RESULTS: Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3-6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. CONCLUSIONS: These findings suggest that the secretory apparatus of resting gland cells is "overbuilt" to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.

4.
Methods Mol Biol ; 1744: 283-297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29392673

RESUMEN

Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.


Asunto(s)
Envejecimiento , Proteasas de Cisteína/metabolismo , Fenómenos Fisiológicos de las Plantas , Vacuolas/enzimología , Activación Enzimática , Proteínas de Plantas/metabolismo , Coloración y Etiquetado
5.
J Exp Bot ; 66(1): 161-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25371504

RESUMEN

Senescence involves increased expression of proteases, which may participate in nitrogen recycling or cellular signalling. 2D zymograms detected two protein species with increased proteolytic activity in senescing leaves of Arabidopsis thaliana. A proteomic analysis revealed that both protein species correspond to a subtilisin protease encoded by At3g14067, termed Senescence-Associated Subtilisin Protease (SASP). SASP mRNA levels and enzyme activity increase during leaf senescence in leaves senescing during both the vegetative or the reproductive phase of the plant life cycle, but this increase is more pronounced in reproductive plants. SASP is expressed in all above-ground organs, but not in roots. Putative AtSASP orthologues were identified in dicot and monocot crop species. A phylogenetic analysis shows AtSASP and its putative orthologues clustering in one discrete group of subtilisin proteases in which no other Arabidospsis subtilisin protease is present. Phenotypic analysis of two knockout lines for SASP showed that mutant plants develop more inflorescence branches during reproductive development. Both AtSASP and its putative rice orthologue (OsSASP) were constitutively expressed in sasp-1 to complement the mutant phenotype. At maturity, sasp-1 plants produced 25% more inflorescence branches and siliques than either the wild-type or the rescued lines. These differences were mostly due to an increased number of second and third order branches. The increased number of siliques was compensated for by a small decrease (5.0%) in seed size. SASP downregulates branching and silique production during monocarpic senescence, and its function is at least partially conserved between Arabidopsis and rice.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Semillas/crecimiento & desarrollo , Semillas/genética , Subtilisinas/genética , Subtilisinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Regulación del Desarrollo de la Expresión Génica , Filogenia , Proteómica , Semillas/enzimología , Alineación de Secuencia , Subtilisinas/química
6.
Plants (Basel) ; 3(4): 498-512, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27135516

RESUMEN

Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, "senescence-associated vacuoles" (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.

7.
J Exp Bot ; 64(16): 4967-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24106291

RESUMEN

Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.


Asunto(s)
Senescencia Celular , Cloroplastos/enzimología , Proteasas de Cisteína/metabolismo , Nicotiana/enzimología , Hojas de la Planta/enzimología , Proteínas de Plantas/metabolismo , Vacuolas/enzimología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Proteasas de Cisteína/genética , Inhibidores de Cisteína Proteinasa/farmacología , Oscuridad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/efectos de la radiación , Vacuolas/efectos de los fármacos , Vacuolas/genética , Vacuolas/efectos de la radiación
8.
Plant J ; 56(2): 196-206, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18564383

RESUMEN

Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30 degrees C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.


Asunto(s)
Cloroplastos/metabolismo , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Vacuolas/metabolismo , Células Cultivadas , Cloroplastos/efectos de los fármacos , Oscuridad , Etilenos/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Nicotiana/citología
9.
Plant Cell ; 19(4): 1295-312, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17468262

RESUMEN

In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64. The expression of SKD1(E232Q), an ATPase-deficient version of SKD1, induces alterations in the endosomal system of tobacco (Nicotiana tabacum) Bright Yellow 2 cells and ultimately leads to cell death. The inducible expression of SKD1(E232Q) in Arabidopsis resulted in enlarged endosomes with a reduced number of internal vesicles. In a yeast two-hybrid screen using Arabidopsis SKD1 as bait, we isolated a putative homolog of mammalian LYST-INTERACTING PROTEIN5 (LIP5)/SKD1 BINDING PROTEIN1 and yeast Vta1p (for Vps twenty associated 1 protein). Arabidopsis LIP5 acts as a positive regulator of SKD1 by increasing fourfold to fivefold its in vitro ATPase activity. We isolated a knockout homozygous Arabidopsis mutant line with a T-DNA insertion in LIP5. lip5 plants are viable and show no phenotypic alterations under normal growth conditions, suggesting that basal SKD1 ATPase activity is sufficient for plant development and growth.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Endosomas/fisiología , Secuencia de Aminoácidos , Animales , Arabidopsis/clasificación , Secuencia Conservada , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
J Exp Bot ; 58(5): 1099-107, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17218544

RESUMEN

Cellular proteins are extensively degraded during leaf senescence, and this correlates with an up-regulation of protease gene expression, particularly cysteine proteases. The objectives of this work were (i) to detect cysteine proteases associated with senescence of wheat leaves under different conditions and (ii) to find out their subcellular location. Activity labelling of cysteine proteases with the biotinylated inhibitor DCG-04 detected five bands at 27, 36, 39, 42, and 46 kDa in leaves of wheat senescing under continuous darkness. In-gel activity assays showed that these proteases are only active in an acid milieu (pH 4), and their activity increased several-fold in senescing leaves. Fractionation experiments showed that the senescence-associated cysteine proteases of 36, 39, 42, and 46 kDa localize to a vacuolar-enriched fraction. The vacuolar cysteine proteases of 36, 39, and 42 kDa increased in activity in attached flag leaves senescing naturally during post-anthesis, and in attached leaves of plants subjected to a period of water deficit. Thus, the activity of these vacuolar cysteine proteases is associated with developmental (post-anthesis) senescence and with senescence induced by stress factors (i.e. protracted darkness or drought). This suggests that vacuoles are involved in senescence-associated cellular degradation, and that different senescence-inducing factors may converge on a single degradation pathway.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Hojas de la Planta/enzimología , Triticum/enzimología , Vacuolas/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Reproducción/fisiología , Factores de Tiempo , Agua/metabolismo
11.
Plant J ; 41(6): 831-44, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15743448

RESUMEN

Vacuolar compartments associated with leaf senescence and the subcellular localization of the senescence-specific cysteine-protease SAG12 (senescence-associated gene 12) were studied using specific fluorescent markers, the expression of reporter genes, and the analysis of high-pressure frozen/freeze-substituted samples. Senescence-associated vacuoles (SAVs) with intense proteolytic activity develop in the peripheral cytoplasm of mesophyll and guard cells in Arabidopsis and soybean. The vacuolar identity of these compartments was confirmed by immunolabeling with specific antibody markers. SAVs and the central vacuole differ in their acidity and tonoplast composition: SAVs are more acidic than the central vacuole and, whereas the tonoplast of central vacuoles is highly enriched in gamma-TIP (tonoplast intrinsic protein), the tonoplast of SAVs lacks this aquaporin. The expression of a SAG12-GFP fusion protein in transgenic Arabidopsis plants shows that SAG12 localizes to SAVs. The analysis of Pro(SAG12):GUS transgenic plants indicates that SAG12 expression in senescing leaves is restricted to SAV-containing cells, for example, mesophyll and guard cells. A homozygous sag12 Arabidopsis mutant develops SAVs and does not show any visually detectable phenotypical alteration during senescence, indicating that SAG12 is not required either for SAV formation or for progression of visual symptoms of senescence. The presence of two types of vacuoles in senescing leaves could provide different lytic compartments for the dismantling of specific cellular components. The possible origin and functions of SAVs during leaf senescence are discussed.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/ultraestructura , Glycine max/enzimología , Glycine max/ultraestructura , Vacuolas/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Cloroplastos , Cisteína Endopeptidasas/fisiología , Concentración de Iones de Hidrógeno , Mutación , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Glycine max/genética , Factores de Tiempo , Vacuolas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA