Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881245

RESUMEN

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Physiol Plant ; 176(3): e14383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859677

RESUMEN

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Asunto(s)
Aclimatación , Fotosíntesis , Complejo de Proteína del Fotosistema II , Rayos Ultravioleta , Vitis , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Aclimatación/efectos de la radiación , Aclimatación/fisiología , Vitis/efectos de la radiación , Vitis/fisiología , Vitis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Flavonoles/metabolismo
3.
Sci Total Environ ; 923: 171601, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461972

RESUMEN

Mosspheres are a kind of moss transplants which offer a novel approach for detecting atmospheric pollution using devitalized mosses, as they reflect the atmospheric deposition of certain elements and polycyclic hydrocarbons. However, due to the unique features of the mosspheres such as the low elemental concentrations in the cultured material, the data treatment needs to be different from that of conventional biomonitoring studies. In this article, our objectives are to identify the best parameter for expressing the levels of chemical elements accumulated by mosspheres, and to apply a recently developed method to assess the probability of pollution of each sample and of the study area. To do this, we used data from a study in which 81 mosspheres were exposed in a medium-sized city in southwestern Europe. Comparing different pollution indices, we selected the enrichment rate (ER) as the most useful, as it is resilient to fluctuations in the initial concentrations and takes into account the time factor, allowing for greater comparability among studies. Then, we determined that the statistical distribution of the ERs of most elements fitted a normal distribution, showing that most samples did not differ significantly from the background concentrations for these elements. On the other hand, for Ni, Pb and Zn there was a subpopulation of samples above background values. In these cases, we determined the probability of pollution of each sample. Finally, we used indicator kriging to calculate the probability of pollution across the study area, identifying the polluted areas, which for some elements match the distribution of the main industries and highways, indicating that this is a suitable protocol to map elemental pollution in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Briófitas , Metales Pesados , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminación Ambiental
4.
Biology (Basel) ; 12(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37759580

RESUMEN

Physiological variables (the content of chlorophyll, flavonoids and nitrogen, together with Fv/Fm) and the content of ten heavy metals (As, Cd, Cu, Hg, Mn, Ni, Pb, Sb, V and Zn) and two platinum group elements (PGEs: Pd and Rh) were measured in the leaves of 50 individuals of Ligustrum lucidum trees regularly distributed in the city of Logroño (Northern Spain). Three of these variables increased with increasing physiological vitality (chlorophyll, nitrogen and Fv/Fm), whereas flavonoids increased in response to different abiotic stresses, including pollution. Our aim was to test their adequacy as proxies for the pollution due to heavy metals and PGEs. The three vitality indicators generally showed high values typical of healthy plants, and they did not seem to be consistently affected by the different pollutants. In fact, the three vitality variables were positively correlated with the first factor of a PCA that was dominated by heavy metals (mainly Pb, but also Sb, V and Ni). In addition, Fv/Fm was negatively correlated with the second factor of the PCA, which was dominated by PGEs, but the trees showing Fv/Fm values below the damage threshold did not coincide with those showing high PGE content. Regarding flavonoid content, it was negatively correlated with PCA factors dominated by heavy metals, which did not confirm its role as a protectant against metal stress. The relatively low levels of pollution usually found in the city of Logroño, together with the influence of other environmental factors and the relative tolerance of Ligustrum lucidum to modest atmospheric pollution, probably determined the only slight response of the physiological variables to heavy metals and PGEs.

5.
Environ Res ; 223: 115406, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746206

RESUMEN

Study air polycyclic aromatic hydrocarbons (PAHs) capturing the spatial variability of their concentrations is not economically feasible with conventional methods. In the present work we tested, for the first time and under real conditions, the suitability for intensive monitoring and mapping these contaminants of innovative, cost-effective passive air samplers known as "Mosspheres". The Mosspheres, filled with a devitalised Sphagnum palustre L. moss clone, were placed in a 575 m. grid in a medium-sized European city for three months. Concentrations in the moss tissues of 15 priority PAHs, including benzo(a)pyrene, were determined and converted into PM10 and bulk deposition with the equations proposed in a recent study. Low concentrations of PAHs were detected, with only a few enriched points never exceeding the legal thresholds, near industrial areas and busy roads. Despite these low PAH concentrations, Mosspheres were able to detect spatial structure for several PAHs and high-resolution pollution maps were constructed for these compounds. The results prove the high sensitivity and suitability of Mosspheres for mapping PAH levels and for quantitative (i.e. PAHs with 4 or more rings) and qualitative (3-ring PAHs) monitoring. Thus, this study supports their widespread application and its potential inclusion in European Directives on air quality control.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Proyectos Piloto , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación del Aire/análisis
6.
J Exp Bot ; 73(13): 4412-4426, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35274697

RESUMEN

Ultraviolet (UV) radiation has contributed to the evolution of organisms since the origins of life. Bryophytes also have evolutionary importance as the first clearly identified lineage of land plants (embryophytes) colonizing the terrestrial environment, thus facing high UV and water scarcity, among other new challenges. Here we review bryophyte UV-omics, the discipline relating bryophytes and UV, with an integrative perspective from genes to the environment. We consider species and habitats investigated, methodology, response variables, protection mechanisms, environmental interactions, UV biomonitoring, molecular and evolutionary aspects, and applications. Bryophyte UV-omics shows convergences and divergences with the UV-omics of other photosynthetic organisms, from algae to tracheophytes. All these organisms converge in that UV damage may be limited under realistic UV levels, due to structural protection and/or physiological acclimation capacity. Nevertheless, bryophytes diverge because they have a unique combination of vegetative and reproductive characteristics to cope with high UV and other concomitant adverse processes, such as desiccation. This interaction has both evolutionary and ecological implications. In addition, UV effects on bryophytes depend on the species and the evolutionary lineage considered, with mosses more UV-tolerant than liverworts. Thus, bryophytes do not constitute a homogeneous functional type with respect to their UV tolerance.


Asunto(s)
Briófitas , Embryophyta , Briófitas/genética , Ecosistema , Fotosíntesis , Plantas/genética
7.
Plants (Basel) ; 10(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34451723

RESUMEN

Ultraviolet (UV) radiation strongly influences grape composition, but only a few studies have focused on how this influence is conserved in the resulting wines. Here we analyzed to what extent the changes induced by exposing Tempranillo grapes to UV radiation from budbreak to harvest were conserved in wine. By using different cut-off filters and lamps, we differentiated the effects of ambient levels of UV-A and UV-B wavelengths, as well as the effects of a realistic UV-B enhancement associated with climate change. Among phenolic compounds, the most consistent responses to UV were those of flavonols (particularly quercetin-, kaempferol-, isorhamnetin- and myricetin-glycosides), which significantly increased in wines whose grapes had been exposed to a synergic combination of UV-A and UV-B radiation. This confirms that flavonols are the phenolic compounds most reliably conserved from UV-exposed grapes to wine, despite the possible influence of the winemaking process. Flavonols are important compounds because they contribute to wine co-pigmentation by stabilizing anthocyanins, and they are interesting antioxidants and nutraceuticals. Hydroxycinnamic acids also increased under the same UV combination or under UV-A alone. Wine VOCs were much less reactive to the UV received by grapes than phenolic compounds, and only esters showed significantly higher values under (mainly) UV-A alone. This was surprising because (1) UV-A has been considered to be less important than UV-B to induce metabolic changes in plants, and (2) esters are produced during winemaking. Esters are relevant due to their contribution to the fruity aroma in wines. In general, the remaining phenolic compounds (stilbenes, flavanols, hydroxybenzoic acids, and anthocyanins) and VOCs (alcohols, hydrocarbons, and fatty acids), together with wine color and antioxidant capacity, showed inconsistent or non-significant responses to UV radiation. These results were summarized by a multivariate analysis. Our study opens up new possibilities to artificially manipulate UV radiation in grapevine cultivation to improve both grape and wine quality.

8.
Physiol Plant ; 173(3): 709-724, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34145583

RESUMEN

The effects of UV radiation on Vitis vinifera cv Tempranillo grapes were studied under field conditions as influenced by ultraviolet (UV) band (UV-A and UV-B), UV-B level (ambient vs enhanced), grape phenological stage (pea-size, veraison, and harvest), grape component (skin, flesh, and seeds), and fraction from which phenolic UV-absorbing compounds (UVACs) were extracted (soluble vs insoluble). Ambient UV-B levels caused stronger effects than ambient UV-A. These effects included increases in flavonol contents (particularly quercetins and kaempferols), the expression of flavonol synthase and chalcone synthase genes (VvFLS4 and VvCHS1), and grape weight and size. In addition, the contents of flavanols and hydroxycinnamic acids increased under UV-B radiation at pea-size stage. All these compounds play physiological roles as antioxidants and UV screens. Synergic effects between UV-B and UV-A were observed. The responses of anthocyanins, stilbenes, and volatile compounds to UV were diffuse or nonexistent. Enhanced UV-B led to rather subtle changes in comparison with ambient UV-B, but differences between both treatments could be demonstrated by multivariate analysis. Pea-size and harvest were the phenological stages where the most significant responses to UV were found, while the skin was the most UV-responsive grape component. Soluble phenolic compounds were much more UV-responsive than insoluble compounds. In conclusion, UV radiation was essential for the induction of specific grape phenolic and volatile compounds. Given the physiological roles of these compounds, as well as their contribution to grape and wine quality, and their potential use as nutraceuticals, our results may have implications on the artificial manipulation of UV radiation.


Asunto(s)
Vitis , Antocianinas , Frutas , Fenoles , Rayos Ultravioleta , Vitis/genética
9.
Plants (Basel) ; 10(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802248

RESUMEN

The liverwort Marchantia polymorpha subsp. ruderalis is an emerging model plant, and some data are available on its responses to ultraviolet (UV) radiation. However, it is unknown if the developmental stage of the thalli modulates the effects of UV radiation on the contents of potentially protecting phenolic compounds. To fill this gap, liverwort samples were exposed or non-exposed to UV radiation for 38 days under controlled conditions, using three developmental stages: gemmae (G), one-month thalli (T1), and two-month thalli (T2). Then, the bulk level of methanol-soluble UV-absorbing compounds and the contents of six flavones (apigenin and luteolin derivatives) were measured. The UV responsiveness decreased with thallus age: G and T1 plants were the most UV-responsive and showed a strong increase in all the variables, with G plants more responsive than T1 plants. In UV-exposed T2 plants, only apigenin derivatives increased and more modestly, probably due to a lower acclimation capacity. Nevertheless, the thalli became progressively tougher due to a decreasing water content, representing a possible structural protection against UV. In UV-exposed plants, the temporal patterns of the accumulation of phenolic compounds were compound-specific. Most compounds decreased with thallus age, but di-glucuronide derivatives showed a bell-shaped pattern, with T1 plants showing the highest contents. A Principal Components Analysis (PCA) ordination of the different samples summarized the results found. The patterns described above should be taken into account to select thalli of an adequate developmental stage for experiments investigating the induction of phenolic compounds by UV radiation.

10.
J Sci Food Agric ; 100(1): 401-409, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31637723

RESUMEN

BACKGROUND: It is widely recognized that ambient levels of solar ultraviolet (UV) radiation strongly influence the phenolic composition of grape skins. However, it is unknown to what extent this influence is reflected in the resulting wines. RESULTS: Tempranillo grapevines were exposed or non-exposed to close-to-ambient solar UV levels using appropriate filters, and the phenolic profiles and antioxidant capacity of both grape skins and the resulting wines were analyzed. In total, 47 phenolic compounds were identified in skins and wines, including flavonols, anthocyanins, flavanols, stilbenes, and hydroxycinnamic and hydroxybenzoic acids. In UV-exposed grape skins, flavonols and anthocyanins increased, whereas flavanols and hydroxybenzoic acids showed no significant change. These characteristics were conserved in the resulting wines. However, for stilbenes, hydroxycinnamic acids and antioxidant capacity, the effect of UV on grape skins was not conserved in wines, probably as a result of changes during winemaking. In addition, color intensity, total phenols and total polyphenol index of wines elaborated from UV-exposed grapes increased (although non-significantly) compared to those made from non-UV-exposed grapes. CONCLUSION: The phenolic composition of grape skins exposed to close-to-ambient solar UV could predict, to some extent, the phenolic composition of the resulting wines, particularly regarding higher contents of flavonols and anthocyanins. Thus, manipulating the UV radiation received by grape skins could improve wine quality by positively influencing color stability and healthy properties. To our knowledge, this is the first study in which the effects of solar UV radiation on phenolic composition have been assessed from grape skins to wine. © 2019 Society of Chemical Industry.


Asunto(s)
Frutas/efectos de la radiación , Fenoles/química , Vitis/química , Vino/análisis , Antocianinas/química , Antioxidantes/química , Flavonoles/química , Frutas/química , Polifenoles/química , Estilbenos/química , Rayos Ultravioleta , Vitis/efectos de la radiación
11.
Front Plant Sci ; 10: 998, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428117

RESUMEN

We studied the acclimation modalities of bryophytes to sun and shade under ambient or close-to-ambient conditions, measuring variables usually influenced by photosynthetically active (PAR) and ultraviolet (UV) radiations. Our aim was to elucidate to what extent the responses to changing radiations were influenced by PAR and UV wavelengths. For this aim, we used three taxonomically and structurally different species: the thalloid liverwort Marchantia polymorpha subsp. polymorpha, the leafy liverwort Jungermannia exsertifolia subsp. cordifolia, and the moss Fontinalis antipyretica. In the field, liverworts were more radiation-responsive than the moss, and the thalloid liverwort was more responsive than the leafy liverwort. Sun plants of M. polymorpha showed, in comparison to shade plants, higher sclerophylly, lower Chl a + b contents, higher Chl a/b ratios, higher (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratios (xanthophyll index), lower F v/F m values, higher contents of methanol-soluble vacuolar UV-absorbing compounds (soluble UVACs), higher values of the ratio between the contents of methanol-insoluble cell wall-bound UVACs (insoluble UVACs) and soluble UVACs, higher contents of soluble luteolin and apigenin derivatives and riccionidin A, and higher contents of insoluble p-coumaric and ferulic acids. Overall, these responses reduced light absorption, alleviated overexcitation, increased photoprotection through non-photochemical energy dissipation, increased UV protection through UV screening and antioxidant capacity, and denoted photoinhibition. J. exsertifolia showed moderate differences between sun and shade plants, while responses of F. antipyretica were rather diffuse. The increase in the xanthophyll index was the most consistent response to sun conditions, occurring in the three species studied. The responses of soluble UVACs were generally clearer than those of insoluble UVACs, probably because insoluble UVACs are relatively immobilized in the cell wall. These modalities of radiation acclimation were reliably summarized by principal components analysis. Using the most radiation-responsive species in the field (M. polymorpha), we found, under close-to-ambient greenhouse conditions, that sclerophylly and Chl a + b content were only influenced by PAR, F v/F m, and luteolin and apigenin derivatives were only determined by UV, and xanthophyll index was influenced by both radiation types. Thus, responses of bryophytes to radiation can be better interpreted considering the influence of both PAR and UV radiation.

12.
Photochem Photobiol Sci ; 18(5): 970-988, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30720036

RESUMEN

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.


Asunto(s)
Hojas de la Planta/metabolismo , Plantas/metabolismo , Rayos Ultravioleta , Fenómenos Ecológicos y Ambientales
13.
Photochem Photobiol Sci ; 18(2): 400-412, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30608105

RESUMEN

We studied the effects of different radiation treatments on the physiology and UV-absorbing compounds of the model liverwort Marchantia polymorpha subsp. ruderalis. Starting from gemmae, samples were exposed to five radiation treatments: low photosynthetically active radiation (PAR), low PAR+ UV-A, low PAR + UV-B, low PAR + UV-A + UV-B, and high PAR. After 35 days, the maximum quantum yield of photosystem II was similar between treatments, which suggested comparable photoinhibition and physiological vitality, also supported by results showing an unchanged chlorophyll a/b ratio and only slight changes in growth. However, the total contents of both chlorophylls and carotenoids decreased in the UV radiation treatments and, more strongly, in the high-PAR samples, suggesting mainly PAR-dependent damage to the photosynthetic pigments. The xanthophyll index (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) was only increased in the high-PAR samples, indicating an increase in photoprotection through nonphotochemical dissipation of the excess energy. The sclerophylly index (the ratio between the thallus dry mass and surface area) was increased in the UV-B-exposed samples, suggesting a UV-induced structural protection. Only the UV-B-exposed samples showed DNA damage. Several apigenin and luteolin derivatives were found in the methanol-soluble vacuolar fraction of the liverwort and p-coumaric and ferulic acids in the methanol-insoluble cell wall-bound fraction. Most individual soluble compounds, the bulk level of soluble compounds, and chalcone synthase expression increased in UV-B-exposed samples, whereas individual insoluble compounds increased in the samples exposed to only PAR. Principal components analysis summarized these responses, showing the strong influence of both UV-B and PAR levels on the physiology and UV protection of the samples.


Asunto(s)
Marchantia/metabolismo , Marchantia/efectos de la radiación , Fotosíntesis/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Metabolismo Energético/efectos de la radiación , Marchantia/fisiología , Factores de Tiempo , Xantófilas/metabolismo
14.
Plant Physiol Biochem ; 134: 137-144, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30037765

RESUMEN

To study the potential quick responses to ultraviolet (UV) radiation of bryophyte phenolic compounds, we cultivated two thalloid liverworts, two leafy liverworts, and two mosses under three moderate realistic UV levels in the laboratory for 22 days. At the end of the daylight period on the first and last culture days, we measured the bulk levels and individual contents of phenolic UV-absorbing compounds (UVACs) of each species, differentiating in both cases the UVACs located in the methanol-soluble (mainly vacuolar) and -insoluble (cell wall-bound) fractions (SUVACs and IUVACs, respectively). The bulk levels of SUVACs and IUVACs mostly showed linear or hyperbolic relationships with the UV dose applied. Thirteen flavones (apigenin and luteolin derivatives) and two hydroxycinnamic acids (p-coumaric and ferulic acids) were identified in the soluble and insoluble fractions, respectively. Only two compounds (p-coumaric and ferulic acids) from the insoluble fraction of the leafy liverwort Plagiochila asplenioides showed a significant quick accumulation in response to UV radiation in the first day of culture, whereas six UVACs (mainly soluble apigenin and luteolin derivatives) from different species (mainly liverworts) were significantly accumulated at the end of the culture. In conclusion, the responses of bryophyte UVACs to UV radiation were influenced by the specific compound considered, the fraction in which each UVAC was located, the global or individual way of UVACs quantification, the bryophyte species and evolutionary lineage, and the experimental conditions used. Particularly, SUVACs were more UV-responsive than IUVACs and liverworts than mosses, and responses were not especially quick.


Asunto(s)
Briófitas/metabolismo , Briófitas/efectos de la radiación , Compartimento Celular , Fenoles/metabolismo , Rayos Ultravioleta , Análisis de Regresión , Factores de Tiempo
15.
Physiol Plant ; 167(4): 540-555, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30515832

RESUMEN

Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.


Asunto(s)
Briófitas/fisiología , Deshidratación , Fotosíntesis , Agua/fisiología
16.
Am J Bot ; 105(6): 996-1008, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29985543

RESUMEN

PREMISE OF THE STUDY: Ultraviolet (UV) radiation influences the viability of algal spores and seed-plant pollen depending on the species, the dose, and the wavelength. In bryophytes, one of the dominant groups of plants in many habitats, UV radiation could determine their spore dispersal strategy, and such data are critical for reconstructing the ancestral state in plants and for determining the distribution range and persistence of bryophyte species. METHODS: Spores of four bryophyte species of the moss genus Orthotrichum that were either hygrochastic or xerochastic (spores dispersed under wet or dry conditions, respectively) were exposed to realistic doses of UV radiation under laboratory conditions. Spore viability was evaluated through germination experiments and, for the first time in bryophytes, ultrastructural observations. Given that the UV-B doses used were relatively higher than the UV-A doses, the UV effect was probably due more to UV-B than UV-A wavelengths. KEY RESULTS: All four species reduced their spore germination capacity in a UV dose-dependent manner, concomitantly increasing spore ultrastructural damage (cytoplasmic and plastid alterations). Most spores eventually died when exposed to the highest UV dose. Interestingly, spores of hygrochastic species were much more UV-sensitive than those of xerochastic species. CONCLUSIONS: UV tolerance determines moss spore viability, as indicated by germination capacity and ultrastructural damage, and differs between spores of species with different dispersal strategies. Specifically, the higher UV tolerance of xerochastic spores may enable them to be dispersed to longer distances than hygrochastic spores, thus extending more efficiently the distribution range of the corresponding species.


Asunto(s)
Bryopsida/efectos de la radiación , Dispersión de las Plantas , Esporas/efectos de la radiación , Bryopsida/ultraestructura , Esporas/ultraestructura , Rayos Ultravioleta
17.
Molecules ; 23(7)2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018202

RESUMEN

The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480⁻540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths. Then, to study energy transfer from parietin, we compared the response to UV of untreated and parietin-free thalli (removed with acetone). A chlorophyll fluorescence kinetic assessment provided evidence of UV-induced electron transport, though independently of the presence of parietin. Thus, a role for anthraquinones in energy harvesting is not supported for X. parietina under presented experimental conditions.


Asunto(s)
Ascomicetos/metabolismo , Emodina/análogos & derivados , Líquenes/metabolismo , Rayos Ultravioleta , Emodina/metabolismo
18.
New Phytol ; 217(1): 151-162, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28892172

RESUMEN

The ultraviolet-B (UV-B) photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses to UV-B in Arabidopsis through differential gene expression, but little is known about UVR8 in other species. Bryophyte lineages were the earliest diverging embryophytes, thus being the first plants facing the UV-B regime typical of land. We therefore examined whether liverwort and moss species have functional UVR8 proteins and whether they are regulated similarly to Arabidopsis UVR8. We examined the expression, dimer/monomer status, cellular localisation and function of Marchantia polymorpha and Physcomitrella patens UVR8 in experiments with bryophyte tissue and expression of green fluorescent protein (GFP)-UVR8 fusions in Nicotiana leaves and transgenic Arabidopsis. P. patens expresses two UVR8 genes that encode functional proteins, whereas the single M. polymorpha UVR8 gene expresses two transcripts by alternative splicing that encode functional UVR8 variants. P. patens UVR8 proteins form dimers that monomerise and accumulate in the nucleus following UV-B exposure, similar to Arabidopsis UVR8, but M. polymorpha UVR8 has weaker dimers and the proteins appear more constitutively nuclear. We conclude that liverwort and moss species produce functional UVR8 proteins. Although there are differences in expression and regulation of P. patens and M. polymorpha UVR8, the mechanism of UVR8 action is strongly conserved in evolution.


Asunto(s)
Bryopsida/genética , Marchantia/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Bryopsida/fisiología , Bryopsida/efectos de la radiación , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes , Marchantia/fisiología , Marchantia/efectos de la radiación , Proteínas de Plantas/genética , Rayos Ultravioleta
19.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28792065

RESUMEN

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Asunto(s)
Clima , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Vitis/anatomía & histología , Vitis/fisiología , Absorción de Radiación , Antioxidantes/metabolismo , Biomasa , Carotenoides/análisis , Europa (Continente) , Geografía , Metaboloma , Fenoles/análisis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Análisis de Componente Principal , Rayos Ultravioleta , Vitis/metabolismo , Vitis/efectos de la radiación , Xantófilas/análisis , alfa-Tocoferol/análisis
20.
J Agric Food Chem ; 64(46): 8722-8734, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27794599

RESUMEN

Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.


Asunto(s)
Vitis/química , Vitis/metabolismo , Altitud , Antocianinas/análisis , Antocianinas/metabolismo , Ecosistema , Europa (Continente) , Flavonoles/análisis , Flavonoles/metabolismo , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/efectos de la radiación , Polifenoles/análisis , Polifenoles/metabolismo , Rayos Ultravioleta , Vitis/crecimiento & desarrollo , Vitis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...