Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(15): e1-e3, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37260194

RESUMEN

An essential metric for describing carbon dynamics in managed forest landscapes is the recovery time of the carbon balance after clear-cutting. Here, we demonstrate how the age-dependent mathematical trajectory is affected by both the selected model and data availability, leading to considerable uncertainty in the modelling of the net ecosystem production (NEP) over stand age. We further show that the initial carbon loss estimates associated with the timing of the source-sink transition (SST) are significant, but may have a limited effect on the total carbon sequestration at the end of the standard (RP, 120 years) or optimal (OCS) rotation periods.


Asunto(s)
Ecosistema , Árboles , Carbono , Incertidumbre , Bosques , Secuestro de Carbono
2.
Glob Chang Biol ; 29(4): 1119-1132, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464908

RESUMEN

Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016-2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131-211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha-1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.


Asunto(s)
Ecosistema , Taiga , Carbono , Bosques , Biomasa , Árboles , Secuestro de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...