Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904576

RESUMEN

We demonstrate how resonant planar coils may be used as sensors to detect and quantify magnetic nanoparticles reliably. A coil's resonant frequency depends on the adjacent materials' magnetic permeability and electric permittivity. A small number of nanoparticles dispersed on a supporting matrix on top of a planar coil circuit may thus be quantified. Such nanoparticle detection has application detection to create new devices to assess biomedicine, food quality assurance, and environmental control challenges. We developed a mathematical model for the inductive sensor response at radio frequencies to obtain the nanoparticles' mass from the self-resonance frequency of the coil. In the model, the calibration parameters only depend on the refraction index of the material around the coil, not on the separate magnetic permeability and electric permittivity. The model compares favourably with three-dimensional electromagnetic simulations and independent experimental measurements. The sensor can be scaled and automated in portable devices to measure small quantities of nanoparticles at a low cost. The resonant sensor combined with the mathematical model is a significant improvement over simple inductive sensors, which operate at smaller frequencies and do not have the required sensitivity, and oscillator-based inductive sensors, which focus on just magnetic permeability.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745381

RESUMEN

Lateral flow immunoassays for detecting biomarkers in body fluids are simple, quick, inexpensive point-of-care tests widely used in disease surveillance, such as during the coronavirus disease 2019 (COVID-19) pandemic. Improvements in sensitivity would increase their utility in healthcare, food safety, and environmental control. Recently, biofunctional magnetic nanoclusters have been used to selectively label target proteins, which allows their detection and quantification with a magneto-inductive sensor. This type of detector is easily integrated with the lateral flow immunoassay format. Pneumolysin is a cholesterol-dependent cytolysin and one of the most important protein virulence factors of pneumonia produced by Streptococcus pneumoniae. It is recognized as an important biomarker for diagnosis in urine samples. Pneumonia is the infectious disease that causes the most deaths globally, especially among children under five years and adults over 65 years, most of them in low- and middle-income countries. There especially, a rapid diagnostic urine test for pneumococcal pneumonia with high sensitivity and specificity would be helpful in primary care. In this work, a lateral flow immunoassay with magnetic nanoclusters conjugated to anti-pneumolysin antibodies was combined with two strategies to increase the technique's performance. First, magnetic concentration of the protein before the immunoassay was followed by quantification by means of a mobile telephone camera, and the inductive sensor resulted in detection limits as low as 0.57 ng (telephone camera) and 0.24 ng (inductive sensor) of pneumolysin per milliliter. Second, magnetic relocation of the particles within the test strip after the immunoassay was completed increased the detected signal by 20%. Such results obtained with portable devices are promising when compared to non-portable conventional pneumolysin detection techniques such as enzyme-linked immunosorbent assays. The combination and optimization of these approaches would have excellent application in point-of-care biodetection to reduce antibiotic misuse, hospitalizations, and deaths from community-acquired pneumonia.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35055222

RESUMEN

Today, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators of heating in magnetic hyperthermia. One of the critical characteristics of nanoparticles to adjust to the biomedical needs of each application is their polymeric coating. Fatty acid coatings are known to contribute to colloidal stability and good surface crystalline quality. While monolayer coatings make the particles hydrophobic, a fatty acid double-layer renders them hydrophilic, and therefore suitable for use in body fluids. In addition, they provide the particles with functional chemical groups that allow their bioconjugation. This work analyzes three types of self-assembled bilayer fatty acid coatings of superparamagnetic iron oxide nanoparticles: oleic, lauric, and myristic acids. We characterize the particles magnetically and structurally and study their potential for resonance imaging, magnetic hyperthermia, and labeling for biosensing in lateral flow immunoassays. We found that the myristic acid sample reported a large r2 relaxivity, superior to existing iron-based commercial agents. For magnetic hyperthermia, a significant specific absorption rate value was obtained for the oleic sample. Finally, the lauric acid sample showed promising results for nanolabeling.

4.
Sensors (Basel) ; 21(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071520

RESUMEN

Colorectal cancer (CRC) is the third leading cause of cancer death and the fourth most common cancer in the world. Colonoscopy is the most sensitive test used for detection of CRC; however, their procedure is invasive and expensive for population mass screening. Currently, the fecal occult blood test has been widely used as a screening tool for CRC but displays low specificity. The lack of rapid and simple methods for mass screening makes the early diagnosis and therapy monitoring difficult. Extracellular vesicles (EVs) have emerged as a novel source of biomarkers due to their contents in proteins and miRNAs. Their detection would not require invasive techniques and could be considered as a liquid biopsy. Specifically, it has been demonstrated that the amount of CD147 expressed in circulating EVs is significant higher for CRC cell lines than for normal colon fibroblast cell lines. Moreover, CD147-containing EVs have been used as a biomarker to monitor response to therapy in patients with CRC. Therefore, this antigen could be used as a non-invasive biomarker for the detection and monitoring of CRC in combination with a Point-of-Care platform as, for example, Lateral Flow Immunoassays (LFIAs). Here, we propose the development of a quantitative lateral flow immunoassay test based on the use of magnetic nanoparticles as labels coupled to inductive sensor for the non-invasive detection of CRC by CD147-positive EVs. The results obtained for quantification of CD147 antigen embedded in EVs isolated from plasma sample have demonstrated that this device could be used as a Point-of-Care tool for CRC screening or therapy monitoring thanks to its rapid response and easy operation.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Biomarcadores de Tumor , Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer , Humanos , Inmunoensayo , Fenómenos Magnéticos
5.
Biosensors (Basel) ; 10(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707868

RESUMEN

Superparamagnetic iron oxide nanoflowers coated by a black carbon layer (Fe3O4@C) were studied as labels in lateral flow immunoassays. They were synthesized by a one-pot solvothermal route, and they were characterized (size, morphology, chemical composition, and magnetic properties). They consist of several superparamagnetic cores embedded in a carbon coating holding carboxylic groups adequate for bioconjugation. Their multi-core structure is especially efficient for magnetic separation while keeping suitable magnetic properties and appropriate size for immunoassay reporters. Their functionality was tested with a model system based on the biotin-neutravidin interaction. For this, the nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the lateral flow immunoassay was carried out with a biotin test line. Quantification was achieved with both an inductive magnetic sensor and a reflectance reader. In order to further investigate the quantifying capacity of the Fe3O4@C nanoflowers, the magnetic lateral flow immunoassay was tested as a detection system for extracellular vesicles (EVs), a novel source of biomarkers with interest for liquid biopsy. A clear correlation between the extracellular vesicle concentration and the signal proved the potential of the nanoflowers as quantifying labels. The limit of detection in a rapid test for EVs was lower than the values reported before for other magnetic nanoparticle labels in the working range 0-3 × 107 EVs/µL. The method showed a reproducibility (RSD) of 3% (n = 3). The lateral flow immunoassay (LFIA) rapid test developed in this work yielded to satisfactory results for EVs quantification by using a precipitation kit and also directly in plasma samples. Besides, these Fe3O4@C nanoparticles are easy to concentrate by means of a magnet, and this feature makes them promising candidates to further reduce the limit of detection.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo/métodos , Carbono , Límite de Detección , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas del Metal , Reproducibilidad de los Resultados
6.
Diagnostics (Basel) ; 10(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397264

RESUMEN

A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.

7.
J Nanosci Nanotechnol ; 19(8): 4839-4856, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913798

RESUMEN

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have attracted a great deal of research attention due to their enormous possibilities of utilisation in different bioapplications such as magnetic particle imaging, drug delivery, hyperthermia or magnetic bio-detection. The purpose of this review is to critically analyze the methods for synthesis of SPIONs reported at the literature taking into account their suitability in molecular recognition applications by means of their conjugation to biomolecules. In this work, we have summarized the main synthesis routes, and controlled agglomeration methods for enhancement of sensitivity at molecular recognition events. This includes conventional chemical precipitation methods, thermal decomposition, microemulsions, or microfluidic synthesis, and the main strategies for the preparation of nanocomposites or SPIONs nanoclusters, such as polymer or silica cross-linking reactions, entrapment in nanovesicles or flower-like structures through the appropriate use of different metals to get synergetic properties for the total nanoarquitecture. Since most of the actual applications in biomedicine require their conjugation to biomolecules, an analysis of the Strengths, Weaknesses, Opportunities and Threats of these methods was carried out for the first time, with a view to highlight the best routes for a given application at biomolecular recognition.


Asunto(s)
Nanopartículas de Magnetita , Sistemas de Liberación de Medicamentos , Nanopartículas Magnéticas de Óxido de Hierro , Polímeros , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...