Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Intervalo de año de publicación
1.
Methods Cell Biol ; 185: 151-164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556446

RESUMEN

Cardiovascular disease (CVD) is the main cause of death worldwide, with myocardial infarction (MI) being the most prevalent pathology involved in CVD. MI is characterized by a deficiency in oxygen supply to the myocardium, thereby promoting ventricular remodeling of the ischemic and remote zone of the heart. Cardiac remodeling associated with MI could promote the development of heart failure and finally death. For these reasons, it is important to develop animal models that mimic human cardiac disease which could help to identify new mechanisms involved in the pathology and, consequently, develop new therapeutic strategies. We herein describe in detail a protocol for MI induction with low mortality rate (<15%) in rats by ligation of the left anterior descending artery. In addition, we also describe two imaging techniques which allow to evaluate cardiac structure and function-including deformation parameters in rats such as transthoracic echocardiography and cardiac magnetic resonance. This animal model could be useful for acute and chronic studies and for evaluating the potential usefulness of different treatments.


Asunto(s)
Infarto del Miocardio , Función Ventricular Izquierda , Ratas , Humanos , Animales , Modelos Animales de Enfermedad , Infarto del Miocardio/diagnóstico por imagen , Miocardio , Corazón
3.
Front Cardiovasc Med ; 9: 995367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451918

RESUMEN

Background: Over the past years, information about the crosstalk between the epicardial adipose tissue (EAT) and the cardiovascular system has emerged. Notably, in the context of acute myocardial infarction (AMI), EAT might have a potential role in the pathophysiology of ventricular structural changes and function, and the clinical evolution of patients. This study aims to assess the impact of EAT on morpho-functional changes in the left ventricle (LV) and the outcome of patients after an AMI. Methods: We studied prospectively admitted patients to our hospital with a first episode of AMI. All patients underwent percutaneous coronary intervention (PCI) during admission. Transthoracic echocardiography (TTE) was performed within 24-48 h after PCI, as well as blood samples to assess levels of galectin-3 (Gal-3). Cardiac magnetic resonance (CMR) was performed 5-7 days after PCI. Clinical follow-up was performed at 1 and 5 years after MI. Results: Mean age of our cohort (n = 41) was 57.5 ± 10 years, and 38 (93%) were male. Nine patients had normal BMI, 15 had overweight (BMI 25-30), and 17 were obese (BMI > 30). Twenty three patients (56%) had ≥ 4 mm thickness of EAT measured with echo. In these patients, baseline left ventricular ejection fraction (LVEF) after AMI was significantly lower, as well as global longitudinal strain. EAT thickness ≥ 4 m patients presented larger infarct size, higher extracellular volume, and higher T1 times than patients with EAT < 4 mm. As for Gal-3, the median was 16.5 ng/mL [12.7-25.2]. At five-year follow-up 5 patients had major cardiac events, and all of them had EAT ≥ 4 mm. Conclusions: Patients with EAT >4 mm have worse LVEF and GLS, larger infarct size and longer T1 values after a MI, and higher levels of Gal-3. EAT >4 mm was an independent predictor of MACE at 5-year follow-up. EAT thickness is a feasible, noninvasive, low-cost parameter that might provide important information regarding the chronic inflammatory process in the myocardium after an infarction.

5.
Antioxidants (Basel) ; 11(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35883722

RESUMEN

We have evaluated cardiac function and fibrosis in infarcted male Wistar rats treated with MitoQ (50 mg/kg/day) or vehicle for 4 weeks. A cohort of patients admitted with a first episode of acute MI were also analyzed with cardiac magnetic resonance and T1 mapping during admission and at a 12-month follow-up. Infarcted animals presented cardiac hypertrophy and a reduction in the left ventricular ejection fraction (LVEF) and E- and A-waves (E/A) ratio when compared to controls. Myocardial infarction (MI) rats also showed cardiac fibrosis and endoplasmic reticulum (ER) stress activation. Binding immunoglobulin protein (BiP) levels, a marker of ER stress, were correlated with collagen I levels. MitoQ reduced oxidative stress and prevented all these changes without affecting the infarct size. The LVEF and E/A ratio in patients with MI were 57.6 ± 7.9% and 0.96 ± 0.34, respectively. No major changes in cardiac function, extracellular volume fraction (ECV), or LV mass were observed at follow-up. Interestingly, the myeloperoxidase (MPO) levels were associated with the ECV in basal conditions. BiP staining and collagen content were also higher in cardiac samples from autopsies of patients who had suffered an MI than in those who had died from other causes. These results show the interactions between mitochondrial oxidative stress and ER stress, which can result in the development of diffuse fibrosis in the context of MI.

6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897655

RESUMEN

A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 µM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.


Asunto(s)
Prealbúmina , Ubiquinona , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Dieta Alta en Grasa/efectos adversos , Fibrosis , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Estrés Oxidativo , Prealbúmina/metabolismo , Proteómica , Ratas , Ratas Wistar , Ubiquinona/metabolismo , Ubiquinona/farmacología
7.
Antioxidants (Basel) ; 11(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35453323

RESUMEN

Obesity is defined by the World Health Organization (WHO) as abnormal or excessive fat accumulation that presents a health risk [...].

8.
Br J Pharmacol ; 179(11): 2733-2753, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34877656

RESUMEN

BACKGROUND AND PURPOSE: Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in the development and the metabolic and cardiovascular alterations of obesity. EXPERIMENTAL APPROACH: mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was evaluated by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were assessed by myography. Histological studies, q-RT-PCR, and western blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients was correlated with vascular damage. KEY RESULTS: Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared with mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodelling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodelling, vessel stiffness, and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. CONCLUSIONS AND IMPLICATIONS: mPGES-1 inhibition might be a novel therapeutic approach to the management of obesity and the associated cardiovascular and metabolic alterations.


Asunto(s)
Resistencia a la Insulina , Obesidad , Prostaglandina-E Sintasas , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Femenino , Fibrosis , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo
9.
Antioxidants (Basel) ; 10(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34439522

RESUMEN

We have evaluated the role of mitochondrial oxidative stress and its association with endoplasmic reticulum (ER) stress activation in the progression of obesity-related cardiovascular fibrosis. MitoQ (200 µM) was orally administered for 7 weeks to male Wistar rats that were fed a high-fat diet (HFD, 35% fat) or a control diet (CT, 3.5% fat). Obese animals presented cardiovascular fibrosis accompanied by increased levels of extracellular matrix proteins and profibrotic mediators. These alterations were associated with ER stress activation characterized by enhanced levels (in heart and aorta vs. CT group, respectively) of immunoglobulin binding protein (BiP; 2.1-and 2.6-fold, respectively), protein disulfide-isomerase A6 (PDIA6; 1.9-fold) and CCAAT-enhancer-binding homologous protein (CHOP; 1.5- and 1.8-fold, respectively). MitoQ treatment was able to prevent (p < 0.05) these modifications at cardiac and aortic levels. MitoQ (5 nM) and the ER stress inhibitor, 4-phenyl butyric acid (4 µM), were able to block the prooxidant and profibrotic effects of angiotensin II (Ang II, 10-6 M) in cardiac and vascular cells. Therefore, the data show a crosstalk between mitochondrial oxidative stress and ER stress activation, which mediates the development of cardiovascular fibrosis in the context of obesity and in which Ang II can play a relevant role.

10.
Cells ; 10(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34359993

RESUMEN

Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.


Asunto(s)
Síndrome Cardiorrenal/patología , Animales , Síndrome Cardiorrenal/fisiopatología , Progresión de la Enfermedad , Fibrosis , Humanos , Modelos Biológicos
11.
Antioxidants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800427

RESUMEN

The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.

12.
Sci Rep ; 11(1): 2591, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510370

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL) is involved in cardiovascular and renal diseases. Gene inactivation of NGAL blunts the pathophysiological consequences of cardiovascular and renal damage. We aimed to design chemical NGAL inhibitors and investigate its effects in experimental models of myocardial infarction (MI) and chronic kidney disease induced by 5/6 nephrectomy (CKD) on respectively 8-12 weeks old C57Bl6/j and FVB/N male mice. Among the 32 NGAL inhibitors tested, GPZ614741 and GPZ058225 fully blocked NGAL-induced inflammatory and profibrotic markers in human cardiac fibroblasts and primary mouse kidney fibroblasts. The administration of GPZ614741 (100 mg/kg/day) for three months, was able to improve cardiac function in MI mice and reduced myocardial fibrosis and inflammation. The administration of GPZ614741 (100 mg/kg/day) for two months resulting to no renal function improvement but prevented the increase in blood pressure, renal tubulointerstitial fibrosis and profibrotic marker expression in CKD mice. In conclusion, we have identified new compounds with potent inhibitory activity on NGAL-profibrotic and pro-inflammatory effects. GPZ614741 prevented interstitial fibrosis and dysfunction associated with MI, as well as tubulointerstitial fibrosis in a CKD model. These inhibitors could be used for other diseases that involve NGAL, such as cancer or metabolic diseases, creating new therapeutic options.


Asunto(s)
Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Masculino , Ratones
13.
Clin Sci (Lond) ; 135(1): 143-159, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33355632

RESUMEN

Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level or renal level respectively. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8 to 10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers up-regulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.


Asunto(s)
Estrés del Retículo Endoplásmico , Fibroblastos/patología , Enfermedades Renales/etiología , Riñón/patología , Infarto del Miocardio/complicaciones , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Humanos , Mediadores de Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Ácido Palmítico/farmacología , Fenilbutiratos/farmacología , Ratas Wistar , Transducción de Señal
14.
Antioxidants (Basel) ; 9(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708095

RESUMEN

BACKGROUND: The objective of this study is to determine the role of mitochondrial oxidative stress in the dysbiosis associated with a high fat diet in rats. In addition, the impact of gut microbiota (GM) in the cardiometabolic consequences of diet-induced obesity in rats has been evaluated. METHODS: Male Wistar rats were fed either a high fat diet (HFD) or a control (CT) one for 6 weeks. At the third week, one-half of the animals of each group were treated with the mitochondrial antioxidant MitoTempo (MT; 0.7 mgKg-1day-1 i.p). RESULTS: Animals fed an HFD showed a lower microbiota evenness and diversity in comparison to CT rats. This dysbiosis is characterized by a decrease in Firmicutes/Bacteroidetes ratio and relevant changes at family and genera compared with the CT group. This was accompanied by a reduction in colonic mucin-secreting goblet cells. These changes were reversed by MT treatment. The abundance of certain genera could also be relevant in the metabolic consequences of obesity, as well as in the occurrence of cardiac fibrosis associated with obesity. CONCLUSIONS: These results support an interaction between GM and mitochondrial oxidative stress and its relation with development of cardiac fibrosis, suggesting new approaches in the management of obesity-related cardiometabolic consequences.

15.
Cells ; 9(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664340

RESUMEN

Circulating levels of soluble interleukin 1 receptor-like 1 (sST2) are increased in heart failure and associated with poor outcome, likely because of the activation of inflammation and fibrosis. We investigated the pathogenic role of sST2 as an inductor of cardiac fibroblasts activation and collagen synthesis. The effects of sST2 on human cardiac fibroblasts was assessed using proteomics and immunodetection approaches to evidence the upregulation of neuropilin-1 (NRP-1), a regulator of the profibrotic transforming growth factor (TGF)-ß1. In parallel, sST2 increased fibroblast activation, collagen and fibrosis mediators. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) restored NRP-1 levels and blocked profibrotic effects induced by sST2. In NRP-1 knockdown cells, sST2 failed to induce fibroblast activation and collagen synthesis. Exogenous NRP-1 enhanced cardiac fibroblast activation and collagen synthesis via NF-κB. In a pressure overload rat model, sST2 was elevated in association with cardiac fibrosis and was positively correlated with NRP-1 expression. Our study shows that sST2 induces human cardiac fibroblasts activation, as well as the synthesis of collagen and profibrotic molecules. These effects are mediated by NRP-1. The blockade of NF-κB restored NRP-1 expression, improving the profibrotic status induced by sST2. These results show a new pathogenic role for sST2 and its mediator, NRP-1, as cardiac fibroblast activators contributing to cardiac fibrosis.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Miocardio/citología , Miocardio/metabolismo , Neuropilina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Animales , Western Blotting , Sistemas CRISPR-Cas , Ensayo de Inmunoadsorción Enzimática , Masculino , FN-kappa B/metabolismo , Proteómica/métodos , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Cells ; 9(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079154

RESUMEN

The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the cardiac alterations associated with obesity. Male Wistar rats were fed either a high fat diet (HFD, 35% fat) or a standard diet (CT, 3.5% fat) for 7 weeks and treated with MitoQ (200 µM). The effect of MitoQ (5 nM) in rat cardiac myoblasts treated for 24 h with palmitic acid (PA, 200 µM) was evaluated. MitoQ reduced cardiac oxidative stress and prevented the development of cardiac fibrosis, hypertrophy, myocardial 18-FDG uptake reduction, and mitochondrial lipid remodeling in HFD rats. It also ameliorated cardiac mitochondrial protein level changes observed in HFD: reductions in fumarate hydratase, complex I and II, as well as increases in mitofusin 1 (MFN1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha, and cyclophilin F (cycloF). In vitro, MitoQ prevented oxidative stress and ameliorated alterations in mitochondrial proteins observed in palmitic acid (PA)-stimulated cardiac myoblasts: increases in carnitine palmitoyltransferase 1A, cycloF, and cytochrome C. PA induced phosphorylation of extracellular signal-regulated kinases and nuclear factor-κB p65. Therefore, the data show the beneficial effects of MitoQ in the cardiac damage induced by obesity and suggests a crosstalk between lipotoxicity and mitochondrial oxidative stress in this damage.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Mitocondrias/metabolismo , Miocardio/metabolismo , Obesidad/complicaciones , Compuestos Organofosforados/uso terapéutico , Ubiquinona/análogos & derivados , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Compuestos Organofosforados/farmacología , Estrés Oxidativo , Ratas , Ratas Wistar , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
17.
FASEB J ; 33(11): 12060-12072, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31370681

RESUMEN

The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the metabolic alterations and the adipose tissue remodeling associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 35% fat) or a standard diet (3.5% fat) for 7 wk and treated with MitoQ (200 µM). A proteomic analysis of visceral adipose tissue from patients with obesity and patients without obesity was performed. MitoQ partially prevented the increase in body weight, adiposity, homeostasis model assessment index, and adipose tissue remodeling in HFD rats. It also ameliorated protein level changes of factors involved in insulin signaling observed in adipose tissue of obese rats: reductions in adiponectin and glucose transporter 4 (GLUT 4) and increases in dipeptidylpeptidase 4, suppressor of cytokine signaling 3 (SOCS3), and insulin receptor substrate 1 phosphorylation. MitoQ prevented down-regulation of adiponectin and GLUT 4 and increases in SOCS3 levels in a TNF-α-induced insulin-resistant 3T3-L1 adipocyte model. MitoQ also ameliorated alterations in mitochondrial proteins observed in obese rats: increases in cyclophylin F and carnitine palmitoyl transferase 1A and reductions in mitofusin1, peroxiredoxin 4, and fumarate hydratase. The proteomic analysis of the visceral adipose tissue from patients with obesity show alterations in mitochondrial proteins similar to those observed in obese rats. Therefore, the data show the beneficial effect of MitoQ in the metabolic dysfunction induced by obesity.-Marín-Royo, G., Rodríguez, C., Le Pape, A., Jurado-López, R., Luaces, M., Antequera, A., Martínez-González, J., Souza-Neto, F. V., Nieto, M. L., Martínez-Martínez, E., Cachofeiro, V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Mitocondrias/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Células 3T3-L1 , Adiposidad/efectos de los fármacos , Adiposidad/genética , Adulto , Animales , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Obesidad/etiología , Compuestos Organofosforados/administración & dosificación , Proteómica/métodos , Ratas Wistar , Ubiquinona/administración & dosificación , Ubiquinona/análogos & derivados , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Clin Sci (Lond) ; 133(14): 1537-1548, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31285364

RESUMEN

Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.


Asunto(s)
Estenosis de la Válvula Aórtica/inmunología , Fibroblastos/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Estrés Oxidativo , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Biomarcadores , Células Cultivadas , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/inmunología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/inmunología , Miocardio/inmunología , Miocardio/patología
19.
Sci Rep ; 9(1): 9607, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270370

RESUMEN

Although optimal therapy for myocardial infarction includes reperfusion to restore blood flow to the ischemic region, ischemia/reperfusion (IR) also initiates an inflammatory response likely contributing to adverse left ventricular (LV) extracellular matrix (ECM) remodeling. Galectin-3 (Gal-3), a ß-galactoside-binding-lectin, promotes cardiac remodeling and dysfunction. Our aim is to investigate whether Gal-3 pharmacological inhibition using modified citrus pectin (MCP) improves cardiac remodeling and functional changes associated with IR. Wistar rats were treated with MCP from 1 day before until 8 days after IR (coronary artery ligation) injury. Invasive hemodynamics revealed that both LV contractility and LV compliance were impaired in IR rats. LV compliance was improved by MCP treatment 8 days after IR. Cardiac magnetic resonance imaging showed decreased LV perfusion in IR rats, which was improved with MCP. There was no difference in LV hypertrophy in MCP-treated compared to untreated IR rats. However, MCP treatment decreased the ischemic area as well as Gal-3 expression. Gal-3 blockade paralleled lower myocardial inflammation and reduced fibrosis. These novel data showing the benefits of MCP in compliance and ECM remodeling in IR reinforces previously published data showing the therapeutic potential of Gal-3 inhibition.


Asunto(s)
Galectina 3/antagonistas & inhibidores , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Pectinas/farmacología , Animales , Biomarcadores , Proteínas Sanguíneas , Modelos Animales de Enfermedad , Galectina 3/genética , Galectinas , Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Pruebas de Función Cardíaca , Inmunohistoquímica , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/etiología , Ratas
20.
Hypertension ; 73(3): 602-611, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30612490

RESUMEN

Myocardial fibrosis is a main contributor to the development of heart failure (HF). CT-1 (cardiotrophin-1) and Gal-3 (galectin-3) are increased in HF and associated with myocardial fibrosis. The aim of this study is to analyze whether CT-1 regulates Gal-3. Proteomic analysis revealed that Gal-3 was upregulated by CT-1 in human cardiac fibroblasts in parallel with other profibrotic and proinflammatory markers. CT-1 upregulation of Gal-3 was mediated by ERK (extracellular signal-regulated kinase) 1/2 and Stat-3 (signal transducer and activator of transcription 3) pathways. Male Wistar rats and B6CBAF1 mice treated with CT-1 (20 µg/kg per day) presented higher cardiac Gal-3 levels and myocardial fibrosis. In CT-1-treated rats, direct correlations were found between cardiac CT-1 and Gal-3 levels, as well as between Gal-3 and perivascular fibrosis. Gal-3 genetic disruption in human cardiac fibroblasts and pharmacological Gal-3 inhibition in mice prevented the profibrotic and proinflammatory effects of CT-1. Dahl salt-sensitive hypertensive rats with diastolic dysfunction showed increased cardiac CT-1 and Gal-3 expression together with cardiac fibrosis and inflammation. CT-1 and Gal-3 directly correlated with myocardial fibrosis. In HF patients, myocardial and plasma CT-1 and Gal-3 were increased and directly correlated. In addition, HF patients with high CT-1 and Gal-3 plasma levels presented an increased risk of cardiovascular death. Our data suggest that CT-1 upregulates Gal-3 which, in turn, mediates the proinflammatory and profibrotic myocardial effects of CT-1. The elevation of both molecules in HF patients identifies a subgroup of patients with a higher risk of cardiovascular mortality. The CT-1/Gal-3 axis emerges as a candidate therapeutic target and a potential prognostic biomarker in HF.


Asunto(s)
Cardiomiopatías/metabolismo , Citocinas/metabolismo , Galectina 3/metabolismo , Inflamación/metabolismo , Miocardio/metabolismo , Regulación hacia Arriba , Animales , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Inflamación/patología , Masculino , Ratones , Miocardio/patología , Proteómica/métodos , Ratas , Ratas Endogámicas Dahl , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...