Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769517

RESUMEN

Parkinson's disease (PD) is the second most frequent neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of large aggregates in the survival neurons called Lewy bodies, which mainly contain α-synuclein (α-syn). The cause of cell death is not known but could be due to mitochondrial dysfunction, protein homeostasis failure, and alterations in the secretory/endolysosomal/autophagic pathways. Survival nigral neurons overexpress the small GTPase Rab1. This protein is considered a housekeeping Rab that is necessary to support the secretory pathway, the maintenance of the Golgi complex structure, and the regulation of macroautophagy from yeast to humans. It is also involved in signaling, carcinogenesis, and infection for some pathogens. It has been shown that it is directly linked to the pathogenesis of PD and other neurodegenerative diseases. It has a protective effect against α-σψν toxicity and has recently been shown to be a substrate of LRRK2, which is the most common cause of familial PD and the risk of sporadic disease. In this review, we analyze the key aspects of Rab1 function in dopamine neurons and its implications in PD neurodegeneration/restauration. The results of the current and former research support the notion that this GTPase is a good candidate for therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab1/genética
2.
Cells ; 8(7)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331075

RESUMEN

In most mammalian cells, the Golgi complex forms a continuous ribbon. In neurodegenerative diseases, the Golgi ribbon of a specific group of neurons is typically broken into isolated elements, a very early event which happens before clinical and other pathological symptoms become evident. It is not known whether this phenomenon is caused by mechanisms associated with cell death or if, conversely, it triggers apoptosis. When the phenomenon was studied in diseases such as Parkinson's and Alzheimer's or amyotrophic lateral sclerosis, it was attributed to a variety of causes, including the presence of cytoplasmatic protein aggregates, malfunctioning of intracellular traffic and/or alterations in the cytoskeleton. In the present review, we summarize the current findings related to these and other neurodegenerative diseases and try to search for clues on putative common causes.


Asunto(s)
Citoesqueleto/patología , Aparato de Golgi , Enfermedades Neurodegenerativas , Neuronas , Animales , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Agregación Patológica de Proteínas
3.
Oncotarget ; 9(69): 33202-33214, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30237862

RESUMEN

Nature is always the best inspiration for basic research. A family with severe thrombosis and antithrombin deficiency, the strongest anticoagulant, carried a new mutation affecting the translation-start codon of SERPINC1, the gene encoding antithrombin. Expression of this variant in a eukaryotic cell system produced three different antithrombins. Two downstream methionines were used as alternative initiation codons, generating highly expressed small aglycosylated antithrombins with cytoplasmic localization. Wild-type antithrombin was generated by the use of the mutated AUU as initiation codon. Actually, any codon except for the three stop codons might be used to initiate translation in this strong Kozak context. We show unexpected consequences of natural mutations affecting translation-start codons. Downstream alternative initiation AUG codons may be used when the start codon is mutated, generating smaller molecules with potential different cell localization, biochemical features and unexplored consequences. Additionally, our data further support the use of other codons apart from AUG for initiation of translation in eukaryotes.

4.
J Immunol ; 195(3): 810-4, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109641

RESUMEN

Exosomes secreted by T cells play an important role in coordinating the immune response. HIV-1 Nef hijacks the route of exosome secretion of T cells to modulate the functioning of uninfected cells. Despite the importance of the process, the protein machinery involved in exosome biogenesis is yet to be identified. In this study, we show that MAL, a tetraspanning membrane protein expressed in human T cells, is present in endosomes that travel toward the plasma membrane for exosome secretion. In the absence of MAL, the release of exosome particles and markers was greatly impaired. This effect was accompanied by protein sorting defects at multivesicular endosomes that divert the exosomal marker CD63 to autophagic vacuoles. Exosome release induced by HIV-1 Nef was also dependent on MAL expression. Therefore, MAL is a critical element of the machinery for exosome secretion and may constitute a target for modulating exosome secretion by human T cells.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Cuerpos Multivesiculares/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Linfocitos T/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Células Jurkat , Cuerpos Multivesiculares/inmunología , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Tetraspanina 30/inmunología
5.
J Cell Biol ; 206(5): 609-18, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25179630

RESUMEN

Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.


Asunto(s)
Homeostasis , Esfingomielinas/metabolismo , Red trans-Golgi/enzimología , Glicosilación , Células HeLa , Humanos , Membranas Intracelulares/enzimología , Manosidasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
6.
Elife ; 3: e02784, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24842878

RESUMEN

TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18.DOI: http://dx.doi.org/10.7554/eLife.02784.001.


Asunto(s)
Retículo Endoplásmico/metabolismo , Procolágeno/química , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Células Cultivadas , Clonación Molecular , Células HeLa , Humanos , Fusión de Membrana , Microscopía Fluorescente , Procolágeno/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas SNARE/metabolismo , Transfección
7.
Traffic ; 5(11): 838-46, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15479449

RESUMEN

Recent findings indicate that Cdc42 regulates Golgi-to-ER (endoplasmic reticulum) protein transport through N-WASP and Arp2/3 (Luna et al. 2002, Mol. Biol. Cell, 13:866-879). To analyse the components of the Cdc42-governed signaling pathway in the secretory pathway, we localized Cdc42, N-WASP and Arp2/3 in the Golgi complex by cryoimmunoelectron microscopy. Cdc42 is found throughout the Golgi stack, particularly in cis/middle cisternae, whereas N-WASP and Arp3 (a component of the Arp2/3 complex) are restricted to cis cisternae. Arp3 also colocalized in peri-Golgi tubulovesicular structures with either KDEL receptor or GM130. Even though Arp3 is not found in TGN46-positive cisternal elements, a small fraction of Arp3-labeled tubulo-vesicular elements showed TGN46 labeling. Active Cdc42 (GTP-bound form) induced relocation of N-WASP and Arp3 to the lateral rims of Golgi cisternae. These results show that the actin nucleation and polymerization signaling pathway governed by Cdc42/N-WASP/Arp operates in the Golgi complex of mammalian cells, further implicating actin dynamics in Golgi-associated membrane trafficking.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Actinas/metabolismo , Animales , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Glicoproteínas/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Inmunoelectrónica , Células 3T3 NIH , Plásmidos/metabolismo , Transducción de Señal , Transfección , Proteína Neuronal del Síndrome de Wiskott-Aldrich
8.
Mol Biol Cell ; 13(3): 866-79, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11907268

RESUMEN

Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Línea Celular , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Microinyecciones , Ratas , Receptores de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Toxinas Shiga/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...