Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Inflam ; 2024: 2205864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250663

RESUMEN

Inflammatory and antimicrobial diseases constitute a major burden for society, and fighting them is a WHO strategic priority. Most of the treatments available to fight inflammatory diseases are anti-inflammatory drugs, such as corticosteroids or immunomodulators that lack cellular specificity and lead to numerous side effects. In addition to suppressing undesired inflammation and reducing disease progression, these drugs lessen the immune system protective functions. Furthermore, treating infectious diseases is more and more challenging due to the rise of microbial resistance to antimicrobial drugs. Thus, controlling the inflammatory process locally without compromising the ability to combat infections is an essential feature in the treatment of inflammatory diseases. We isolated three forms (DRS-DA2N, DRS-DA2NE, and DRS-DA2NEQ) of the same peptide, DRS-DA2, which belongs to the dermaseptin family, from the Mexican tree frog Pachymedusa dacnicolor. Interestingly, DRS-DA2N and DRS-DA2NEQ exhibit a dual activity by inducing the death of leukocytes as well as that of Gram-negative and Gram-positive bacteria, including multiresistant strains, without affecting other cells such as epithelial cells or erythrocytes. We showed that the death of both immune cells and bacteria is induced rapidly by DRS-DA2 and that the membrane is permeabilized, leading to the loss of membrane integrity. We also validated the capacity of DRS-DA2 to regulate the pool of inflammatory cells in vivo in a mouse model of noninfectious peritonitis. After the induction of peritonitis, a local injection of DRS-DA2N could decrease the number of inflammatory cells locally in the peritoneal cavity without inducing a systemic effect, as no changes in the number of inflammatory cells could be detected in blood or in the bone marrow. Collectively, these data suggest that this peptide could be a promising tool in the treatment of inflammatory diseases, such as inflammatory skin diseases, as it could reduce the number of inflammatory cells locally without suppressing the ability to combat infections.

2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373257

RESUMEN

Necroptosis is a recently discovered form of regulated cell death characterized by the disruption of plasma membrane integrity and the release of intracellular content. Mixed lineage kinase domain-like (MLKL) protein is the main player of this cell death pathway as it mediates the final step of plasma membrane permeabilization. Despite the significant progress in our knowledge of the necroptotic pathway and MLKL biology, the precise mechanism of how MLKL functions remain unclear. To understand in what way MLKL executes necroptosis, it is crucial to decipher how the molecular machinery of regulated cell death is activated in response to different stimuli or stressors. It is also indispensable to unveiling the structural elements of MLKL and the cellular players that are required for its regulation. In this review, we discuss the key steps that lead to MLKL activation, possible models that explain how it becomes the death executor in necroptosis, and its emerging alternative functions. We also summarize the current knowledge about the role of MLKL in human disease and provide an overview of existing strategies aimed at developing new inhibitors that target MLKL for necroptosis intervention.


Asunto(s)
Apoptosis , Proteínas Quinasas , Humanos , Apoptosis/fisiología , Proteínas Quinasas/metabolismo , Necroptosis , Muerte Celular , Membrana Celular/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
PLoS One ; 13(10): e0205727, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30325956

RESUMEN

The occurrence of nosocomial infections has been on the rise for the past twenty years. Notably, infections caused by the Gram-positive bacteria Staphylococcus aureus represent a major clinical problem, as an increase in antibiotic multi-resistant strains has accompanied this rise. There is thus a crucial need to find and characterize new antibiotics against Gram-positive bacteria, and against antibiotic-resistant strains in general. We identified a new dermaseptin, DMS-DA6, produced by the skin of the Mexican frog Pachymedusa dacnicolor, with specific antibacterial activity against Gram-positive bacteria. This peptide is particularly effective against two multiple drug-resistant strains Enterococcus faecium BM4147 and Staphylococcus aureus DAR5829, and has no hemolytic activity. DMS-DA6 is naturally produced with the C-terminal carboxyl group in either the free or amide forms. By using Gram-positive model membranes and different experimental approaches, we showed that both forms of the peptide adopt an α-helical fold and have the same ability to insert into, and to disorganize a membrane composed of anionic lipids. However, the bactericidal capacity of DMS-DA6-NH2 was consistently more potent than that of DMS-DA6-OH. Remarkably, rather than resulting from the interaction with the negatively charged lipids of the membrane, or from a more stable conformation towards proteolysis, the increased capacity to permeabilize the membrane of Gram-positive bacteria of the carboxyamidated form of DMS-DA6 was found to result from its enhanced ability to interact with peptidoglycan.


Asunto(s)
Proteínas Anfibias/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros/metabolismo , Enterococcus faecium/efectos de los fármacos , Membranas/efectos de los fármacos , Peptidoglicano/farmacología , Piel/química , Staphylococcus aureus/efectos de los fármacos , Células A549/efectos de los fármacos , Proteínas Anfibias/genética , Proteínas Anfibias/aislamiento & purificación , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Dicroismo Circular , Sinergismo Farmacológico , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...