Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 16769, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202891

RESUMEN

A large area of the terrestrial land surface is used for livestock grazing. Trees on grazing lands provide and can enhance multiple ecosystem services such as provisioning, cultural and regulating, that include carbon sequestration. In this study, we assessed the above- and belowground carbon stocks across six different land-uses in livestock-dominated landscapes of Mexico. We measured tree biomass and soil organic carbon (SOC) stocks in fodder banks, live fences, pasturelands with dispersed trees, secondary forests, and primary forests from three different geographical regions and compared them with conventional open pasturelands respectively. We also calculated tree diversity indices for each land-use and their similarity with native primary forests. The aboveground woody biomass stocks differed significantly between land-uses and followed the gradient from less diverse conventional open pasturelands to silvopastoral systems and ecologically complex primary forests. The SOC stocks showed a differential response to the land-use gradient dependent on the study region. Multivariate analyses showed that woody biomass, fine root biomass, and SOC concentrations were positively related, while land-use history and soil bulk density showed an inverse relationship to these variables. Silvopastoral systems and forest remnants stored 27-163% more carbon compared to open pasturelands. Our results demonstrate the importance of promoting appropriate silvopastoral systems and conserving forest remnants within livestock-dominated landscapes as a land-based carbon mitigation strategy. Furthermore, our findings also have important implications to help better manage livestock-dominated landscapes and minimize pressures on natural protected areas and biodiversity in the hotspots of deforestation for grassland expansion.


Asunto(s)
Carbono , Ecosistema , Animales , Biomasa , Carbono/análisis , Secuestro de Carbono , Bosques , Ganado , México , Suelo , Árboles
2.
Proc Natl Acad Sci U S A ; 119(15): e2119959119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377782

RESUMEN

Biodiversity-mediated ecosystem services (ES) support human well-being, but their values are typically estimated individually. Although ES are part of complex socioecological systems, we know surprisingly little about how multiple ES interact ecologically and economically. Interactions could be positive (synergy), negative (trade-offs), or absent (additive effects), with strong implications for management and valuation. Here, we evaluate the interactions of two ES, pollination and pest control, via a factorial field experiment in 30 Costa Rican coffee farms. We found synergistic interactions between these two critical ES to crop production. The combined positive effects of birds and bees on fruit set, fruit weight, and fruit weight uniformity were greater than their individual effects. This represents experimental evidence at realistic farm scales of positive interactions among ES in agricultural systems. These synergies suggest that assessments of individual ES may underestimate the benefits biodiversity provides to agriculture and human well-being. Using our experimental results, we demonstrate that bird pest control and bee pollination services translate directly into monetary benefits to coffee farmers. Excluding both birds and bees resulted in an average yield reduction of 24.7% (equivalent to losing US$1,066.00/ha). These findings highlight that habitat enhancements to support native biodiversity can have multiple benefits for coffee, a valuable crop that supports rural livelihoods worldwide. Accounting for potential interactions among ES is essential to quantifying their combined ecological and economic value.


Asunto(s)
Café , Producción de Cultivos , Control de Plagas , Polinización , Biodiversidad
3.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199922

RESUMEN

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Evolución Biológica , Humanos , Filogenia
4.
J Environ Manage ; 310: 114717, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217445

RESUMEN

Degradation, fragmentation, and loss of tropical forests has exponentially increased in the last decades leading to unprecedented rates of species extinctions and loss of ecosystems functions and services. Forest restoration is key to recover ecosystems health and achieve the UN Sustainable Development Goals. However, restoring forests at the landscape scale presents many challenges, since it requires balancing conservation goals and economic development. In this study, we used a spatial planning tool (Marxan) to identify priority areas for restoration satisfying multiple objectives across a biological corridor in Costa Rica. Biological corridors are critical conservation instruments promoting forest connectivity while acknowledging human presence. Increasing forest connectivity requires restoration initiatives that will likely conflict with other land uses, some of them of high national economic importance. Our restoration plan sought to maximize the provision of forest-related services (i.e., seed dispersal, tourism and carbon storage) while minimizing the impact on current land uses and thus avoiding potential conflicts. We quantified seed dispersal and tourism services (birdwatching potential) using species distribution models. We used the carbon sequestration model of InVEST to quantify carbon storage potential. We tested different restoration scenarios that differed in whether land opportunity costs of current uses were considered or not when identifying potential restoration areas, or how these costs were estimated. We showed how a landscape-scale forest restoration plan accounting for only forest connectivity and ecosystem service provision capacity can greatly differ from a plan that considers the potential impacts on local livelihoods. Spatial planning tools can assist at designing cost-effective landscape-scale forest restoration plans, identifying priority areas where forest restoration can maximize ecosystem provision and increase forest connectivity. Special care must be paid to the use of adequate estimates of opportunity cost, to avoid potential conflicts between restoration goals and other legitimate land uses.


Asunto(s)
Ecosistema , Desarrollo Sostenible , Biodiversidad , Secuestro de Carbono , Conservación de los Recursos Naturales , Costa Rica , Bosques , Humanos
5.
Proc Natl Acad Sci U S A ; 115(33): E7863-E7870, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30072434

RESUMEN

The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.


Asunto(s)
Productos Agrícolas , Ecosistema , Modelos Biológicos , Control Biológico de Vectores , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...