Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 373(2042)2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25897096

RESUMEN

The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres of simulations with and without ion-neutral interaction effects.

2.
Science ; 346(6207): 1255726, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25324397

RESUMEN

The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structured envelope. Recent observations by the Interface Region Imaging Spectrograph (IRIS) reveal that it is difficult to determine what is up and down, even in the cool 6000-kelvin photosphere just above the solar surface: This region hosts pockets of hot plasma transiently heated to almost 100,000 kelvin. The energy to heat and accelerate the plasma requires a considerable fraction of the energy from flares, the largest solar disruptions. These IRIS observations not only confirm that the photosphere is more complex than conventionally thought, but also provide insight into the energy conversion in the process of magnetic reconnection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA