Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37586368

RESUMEN

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Diferenciación Celular , Ciclo Celular , Transcripción Genética , Proteínas Nucleares/metabolismo , Factores de Elongación Transcripcional/genética
2.
medRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945604

RESUMEN

The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with ß-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.

3.
Proc Natl Acad Sci U S A ; 112(44): 13467-72, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483469

RESUMEN

Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Algoritmos , Secuencia de Bases , Carbocianinas/química , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , ATPasas Transportadoras de Cobre , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Transactivadores/química , Transactivadores/genética
4.
Nat Commun ; 6: 7445, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26145755

RESUMEN

Binding and unbinding of transcription regulators at operator sites constitute a primary mechanism for gene regulation. While many cellular factors are known to regulate their binding, little is known on how cells can modulate their unbinding for regulation. Using nanometer-precision single-molecule tracking, we study the unbinding kinetics from DNA of two metal-sensing transcription regulators in living Escherichia coli cells. We find that they show unusual concentration-dependent unbinding kinetics from chromosomal recognition sites in both their apo and holo forms. Unexpectedly, their unbinding kinetics further varies with the extent of chromosome condensation, and more surprisingly, varies in opposite ways for their apo-repressor versus holo-activator forms. These findings suggest likely broadly relevant mechanisms for facile switching between transcription activation and deactivation in vivo and in coordinating transcription regulation of resistance genes with the cell cycle.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Cromosomas Bacterianos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Conformación de Ácido Nucleico , Unión Proteica , Transcripción Genética
5.
Biochemistry ; 52(41): 7170-83, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24053279

RESUMEN

Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Metalochaperonas/metabolismo , Metales/metabolismo , Animales , Proteínas de Unión al ADN/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Metalochaperonas/química , Metalochaperonas/genética
6.
Proc Natl Acad Sci U S A ; 109(38): 15121-6, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949686

RESUMEN

Metalloregulators regulate transcription in response to metal ions. Many studies have provided insights into how transcription is activated upon metal binding by MerR-family metalloregulators. In contrast, how transcription is turned off after activation is unclear. Turning off transcription promptly is important, however, as the cells would not want to continue expressing metal resistance genes and thus waste energy after metal stress is relieved. Using single-molecule FRET measurements we studied the dynamic interactions of the copper efflux regulator (CueR), a Cu(+)-responsive MerR-family metalloregulator, with DNA. Besides quantifying its DNA binding and unbinding kinetics, we discovered that CueR spontaneously flips its binding orientation at the recognition site. CueR also has two different binding modes, corresponding to interactions with specific and nonspecific DNA sequences, which would facilitate recognition localization. Most strikingly, a CueR molecule coming from solution can directly substitute for a DNA-bound CueR or assist the dissociation of the incumbent CueR, both of which are unique examples for any DNA-binding protein. The kinetics of the direct protein substitution and assisted dissociation reactions indicate that these two unique processes can provide efficient pathways to replace a DNA-bound holo-CueR with apo-CueR, thus turning off transcription promptly and facilely.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Iones/química , Fenómenos Fisiológicos Bacterianos , ADN/química , Proteínas de Unión al ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Metales/química , Modelos Biológicos , Unión Proteica , Compuestos de Sulfhidrilo/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...