Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 27(12): 2537-2545, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962115

RESUMEN

Protease roles in cancer progression have been demonstrated and their inhibitors display antitumor effects. Cathepsins are lysosomal cysteine proteases that have increased expression in tumor cells, and tellurium compounds were described as potent cysteine protease inhibitors and also assayed in several animal models. In this work, the two enantiomeric forms of 1-[Butyl(dichloro)-λ4-tellanyl]-2-[1S-methoxyethyl]benzene (organotelluranes RF-13R and RF-13S) were evaluated as inhibitors of cathepsins B and L, showing significant enantiodiscrimination. We observed their cytotoxic effects on a murine melanoma model, effectively inhibiting tumor progression in vivo. The enantiomers were able to inhibit melanoma cell viability, migration and invasion in vitro. Besides, RF-13S and RF-13R were able to inhibit endothelial cell angiogenesis using a tube formation assay in vitro, in a stereodependent manner. These organotelluranes affected cell morphology, showing disassembling of the actin cytoskeleton. These results suggest organotelluranes as potential antitumor agents, acting directly on tumor cell proliferation, migration and invasion, and on endothelial cells, disrupting angiogenesis, showing low toxicity and high efficiency. Taken together our results suggest that this class of compounds should be further studied to reveal their potential as antitumoral agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Compuestos Organometálicos/química , Telurio/química , Citoesqueleto de Actina/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Catepsina B/antagonistas & inhibidores , Catepsina B/metabolismo , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Estereoisomerismo
2.
Front Microbiol ; 9: 1538, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050519

RESUMEN

Objectives:Ureaplasma diversum is a pathogen of cows that may cause intense inflammatory responses in the reproductive tract and interfere with bovine reproduction. The aims of this study were to evaluate the immune response of bovine blastocysts and macrophages to U. diversum infection and to evaluate the invasion capacity of this microorganism in bovine blastocysts. Methods: Viable and heat-inactivated U. diversum strains ATCC 49782 and CI-GOTA and their extracted membrane lipoproteins were inoculated in macrophages in the presence or absence of signaling blockers of Toll-Like Receptor (TLR) 4, TLR2/4, and Nuclear Factor KB (NF-κB). In addition, the same viable U. diversum strains were used to infect bovine blastocysts. RNA was extracted from infected and lipoprotein-exposed macrophages and infected blastocysts and assayed by qPCR to evaluate the expression of Interleukin 1 beta (IL-1ß), Tumor Necrosis Factor Alpha (TNF-α), TLR2 and TLR4 genes. U. diversum internalization in blastocysts was followed by confocal microscopy. Results: Both Ureaplasma strains and different concentrations of extracted lipoproteins induced a higher gene expression of IL-1ß, TNF-α, TLR2, and TLR4 in macrophages (p < 0.05) when compared to non-infected cells. The used blockers inhibited the expression of IL-1ß and TNF-α in all treatments. Moreover, U. diversum was able to internalize within blastocysts and induce a higher gene expression of IL-1b and TNF- α when compared to non-infected blastocysts (p < 0.05). Conclusion: The obtained results strongly suggest that U. diversum and its lipoproteins interact with TLR4 in a signaling pathway acting via NF-kB signaling to stimulate the inflammatory response. This is the first study to evaluate the in vitro immunological response of macrophages and bovine blastocysts against U. diversum. These results may contribute to a better understanding of the immunomodulatory activity and pathogenicity of this infectious agent.

3.
Molecules ; 20(7): 12804-16, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26184153

RESUMEN

Lung cancer is the leading cause of cancer deaths in the world. Disease stage is the most relevant factor influencing mortality. Unfortunately, most patients are still diagnosed at an advanced stage and their five-year survival rate is only 4%. Thus, it is relevant to identify novel drugs that can improve the treatment options for lung cancer. Natural products have been an important source for the discovery of new compounds with pharmacological potential including antineoplastic agents. We have previously isolated a prenylated benzophenone (7-epiclusianone) from Garcinia brasiliensis (Clusiaceae) that has several biological properties including antiproliferative activity against cancer cell lines. In continuation with our studies, the present work aimed to investigate the mechanisms involved with antiproliferative activity of 7-epiclusianone in A549 cells. Our data showed that 7-epiclusianone reduced the viability of A549 cells in a concentration-dependent manner (IC50 of 16.13 ± 1.12 µM). Cells were arrested in G1/S transition and apoptosis was induced. In addition, we observed morphological changes with cytoskeleton disorganization in consequence of the treatment. Taken together, the results showed that cell cycle arrest in G1/S transition is the main mechanism involved with antiproliferative activity of 7-epiclusianone. Our results are promising and open up the prospect of using this compound in further anticancer in vivo studies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzofenonas/farmacología , Benzoquinonas/farmacología , Células Epiteliales/efectos de los fármacos , Frutas/química , Garcinia/química , Mucosa Respiratoria/efectos de los fármacos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzoquinonas/química , Benzoquinonas/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Extractos Vegetales/química , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA