Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(7): 1059-1073.e8, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821063

RESUMEN

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiología , Antitoxinas/metabolismo , Antitoxinas/genética , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética
2.
Nat Commun ; 14(1): 3531, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316480

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen highly resistant to environmental changes and antimicrobial treatments. Regulation of cellular motility and biofilm formation is important for its virulence, although it is poorly described at the molecular level. It has been previously reported that Acinetobacter genus specifically produces a small positively charged metabolite, polyamine 1,3-diaminopropane, that has been associated with cell motility and virulence. Here we show that A. baumannii encodes novel acetyltransferase, Dpa, that acetylates 1,3-diaminopropane, directly affecting the bacterium motility. Expression of dpa increases in bacteria that form pellicle and adhere to eukaryotic cells as compared to planktonic bacterial cells, suggesting that cell motility is linked to the pool of non-modified 1,3-diaminopropane. Indeed, deletion of dpa hinders biofilm formation and increases twitching motion confirming the impact of balancing the levels of 1,3-diaminopropane on cell motility. The crystal structure of Dpa reveals topological and functional differences from other bacterial polyamine acetyltransferases, adopting a ß-swapped quaternary arrangement similar to that of eukaryotic polyamine acetyltransferases with a central size exclusion channel that sieves through the cellular polyamine pool. The structure of catalytically impaired DpaY128F in complex with the reaction product shows that binding and orientation of the polyamine substrates are conserved between different polyamine-acetyltransferases.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acetiltransferasas/genética , Poliaminas , Biopelículas
3.
Sci Adv ; 9(3): eade4077, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652515

RESUMEN

Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown. We have determined the crystal structure of the DarB2:RelNTD2 complex, uncovering that DarB directly engages the SYNTH domain of Rel to stimulate (p)ppGpp synthesis. This association with DarB promotes a SYNTH-primed conformation of the N-terminal domain region, markedly increasing the affinity of Rel for ATP while switching off the hydrolase activity of the enzyme. Binding to c-di-AMP rigidifies DarB, imposing an entropic penalty that precludes DarB-mediated control of Rel during normal growth. Our experiments provide the basis for understanding a previously unknown mechanism of allosteric regulation of Rel stringent factors independent of amino acid starvation.

4.
Biochimie ; 205: 95-101, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36037883

RESUMEN

Transporters regulate trafficking through the biological membrane of living cells and organelles. Therefore, these proteins play an important role in key cellular processes. Obtaining a molecular-level description of the mechanism of transporters is highly desirable to understand and modulate such processes. Different challenges currently complicate this effort, mostly due to transporters' intrinsic properties. They are dynamic and often averse to in vitro characterization. The crossing of the membrane via a transporter depends on both global and local structural changes that will enable substrate binding from one side of the membrane and release on the other. Dedicated approaches are required to monitor these dynamic changes, ideally within the complex membrane environment. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has recently emerged as a powerful biophysical tool to understand transporters' mechanism. This mini-review aims to offer to the reader an overview of the field of HDX-MS applied to transporters. It first summarizes the current workflow for HDX-MS measurements on transporters. It then provides illustrative examples on the molecular insights that are accessible thanks to the technique; following conformational transitions between different states, observing structural changes upon ligand binding and finally understanding the role of lipid-protein interactions.


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Hidrógeno/química , Deuterio , Medición de Intercambio de Deuterio/métodos , Conformación Proteica , Espectrometría de Masas/métodos , Proteínas de Transporte de Membrana
5.
Nature ; 612(7938): 132-140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385533

RESUMEN

Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.


Asunto(s)
Bacteriófagos , Proteínas de la Cápside , Escherichia coli , Inmunidad Innata , Animales , Antitoxinas/inmunología , Bacteriófagos/inmunología , Proteínas de la Cápside/inmunología , Escherichia coli/inmunología , Escherichia coli/virología , Eucariontes/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología
6.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873050

RESUMEN

Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Arqueales/metabolismo , Membrana Celular/metabolismo , Medición de Intercambio de Deuterio , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/genética , Proteínas Arqueales/genética , Transporte Biológico , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Espectrometría de Masas , Mutación , Unión Proteica , Imagen Individual de Molécula
7.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341587

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Desplegamiento Proteico
8.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298884

RESUMEN

Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Humanos , Unión Proteica/fisiología
9.
Nat Commun ; 11(1): 6162, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268777

RESUMEN

Proton-coupled transporters use transmembrane proton gradients to power active transport of nutrients inside the cell. High-resolution structures often fail to capture the coupling between proton and ligand binding, and conformational changes associated with transport. We combine HDX-MS with mutagenesis and MD simulations to dissect the molecular mechanism of the prototypical transporter XylE. We show that protonation of a conserved aspartate triggers conformational transition from outward-facing to inward-facing state. This transition only occurs in the presence of substrate xylose, while the inhibitor glucose locks the transporter in the outward-facing state. MD simulations corroborate the experiments by showing that only the combination of protonation and xylose binding, and not glucose, sets up the transporter for conformational switch. Overall, we demonstrate the unique ability of HDX-MS to distinguish between the conformational dynamics of inhibitor and substrate binding, and show that a specific allosteric coupling between substrate binding and protonation is a key step to initiate transport.


Asunto(s)
Proteínas de Escherichia coli/química , Glucosa/química , Protones , Simportadores/química , Xilosa/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosa/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Cinética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Termodinámica , Xilosa/metabolismo
10.
Nat Struct Mol Biol ; 27(9): 829-835, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719456

RESUMEN

Multidrug efflux pumps present a challenge to the treatment of bacterial infections, making it vitally important to understand their mechanism of action. Here, we investigate the nature of substrate binding within Lactococcus lactis LmrP, a prototypical multidrug transporter of the major facilitator superfamily. We determined the crystal structure of LmrP in a ligand-bound outward-open state and observed an embedded lipid in the binding cavity of LmrP, an observation supported by native mass spectrometry analyses. Molecular dynamics simulations suggest that the anionic lipid stabilizes the observed ligand-bound structure. Mutants engineered to disrupt binding of the embedded lipid display reduced transport of some, but not all, antibiotic substrates. Our results suggest that a lipid within the binding cavity could provide a malleable hydrophobic component that allows adaptation to the presence of different substrates, helping to explain the broad specificity of this protein and possibly other multidrug transporters.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfatidilgliceroles/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Lactococcus lactis/química , Ligandos , Proteínas de Transporte de Membrana/química , Simulación de Dinámica Molecular , Fosfatidilgliceroles/química , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA