Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(3): 1773-1788, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36754866

RESUMEN

Bacteria can live in a variety of interkingdom communities playing key ecological roles. The microbiome of leaf-cutting attine ant colonies are a remarkable example of such communities, as they support ants' metabolic processes and the maintenance of ant-fungus gardens. Studies on this topic have explored the bacterial community of the whole fungus garden, without discerning bacterial groups associated with the nutrient storage structures (gongylidia) of ant fungal cultivars. Here we studied bacteria isolated from the surface of gongylidia in the cultivars of Atta sexdens and Acromyrmex coronatus, to assess whether the bacterial community influences the biology of the fungus. A total of 10 bacterial strains were isolated from gongylidia (Bacillus sp., Lysinibacillus sp., Niallia sp., Staphylococcus sp., Paenibacillus sp., Pantoea sp., Staphylococcus sp., and one Actinobacteria). Some bacterial isolates increased gongylidia production and fungal biomass while others had inhibitory effects. Eight bacterial strains were confirmed to form biofilm-like structures on the fungal cultivar hyphae. They also showed auxiliary metabolic functions useful for the development of the fungal garden such as phosphate solubilization, siderophore production, cellulose and chitin degradation, and antifungal activity against antagonists of the fungal cultivar. Bacteria-bacteria interaction assays revealed heterogeneous behaviors including synergism and competition, which might contribute to regulate the community structure inside the garden. Our results suggest that bacteria and the ant fungal cultivar interact directly, across a continuum of positive and negative interactions within the community. These complex relationships could ultimately contribute to the stability of the ant-fungus mutualism.


Asunto(s)
Actinobacteria , Hormigas , Animales , Hormigas/microbiología , Bacterias , Hifa , Celulosa , Simbiosis
2.
IMA Fungus ; 12(1): 23, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429165

RESUMEN

Escovopsis is a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hampered Escovopsis research. The aim of this study is to reassess the genus Escovopsis using a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for future Escovopsis research. Our results support the separation of Escovopsis into three distinct genera. In light of this, we redefine Escovopsis as a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently, E. kreiselii and E. trichodermoides were recombined into two new genera, Sympodiorosea and Luteomyces, as S. kreiselii and L. trichodermoides, respectively. This study expands our understanding of the systematics of Escovopsis and related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies.

3.
MycoKeys ; (46): 97-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30814906

RESUMEN

Escovopsis (Ascomycota: Hypocreales, Hypocreaceae) is the only known parasite of the mutualistic fungi cultivated by fungus-growing ants (Formicidae: Myrmicinae: Attini: Attina, the "attines"). Despite its ecological role, the taxonomy and systematics of Escovopsis have been poorly addressed. Here, based on morphological and phylogenetic analyses with three molecular markers (internal transcribed spacer, large subunit ribosomal RNA and the translation elongation factor 1-alpha), we describe Escovopsisclavatus and E.multiformis as new species isolated from fungus gardens of Apterostigma ant species. Our analysis shows that E.clavatus and E.multiformis belong to the most derived Escovopsis clade, whose main character is the presence of conidiophores with vesicles. Nevertheless, the most outstanding feature of both new species is the presence of a swollen region in the central hypha of the conidiophore named swollen cell, which is absent in all previously described Escovopsis species. The less derived Escovopsis clades lack vesicles and their phylogenetic position within the Hypocreaceae still remains unclear. Considering the high genetic diversity in Escovopsis, the description of these new species adds barely two pieces to a huge taxonomic puzzle; however, this discovery is an important piece for building the systematics of this group of fungi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...