Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Zebrafish ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436568

RESUMEN

An effective method for tissue-specific ablation in zebrafish is the nitroreductase (NTR)/metronidazole (MTZ) system. Expressing bacterial NTR in the presence of nitroimidazole compounds causes apoptotic cell death, which can be useful for understanding many biological processes. However, this requires tissue-specific expression of the NTR enzyme, and many tissues have yet to be targeted with transgenic lines that express NTR. We generated a transgenic zebrafish line expressing NTR in differentiated skeletal muscle. Treatment of embryos with MTZ caused muscle specific cell ablation. We demonstrate this line can be used to monitor muscle regeneration in whole embryos and in transplanted transgenic cells.

2.
Differentiation ; 137: 100765, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38522217

RESUMEN

The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (ß-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.

3.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370624

RESUMEN

The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (ß-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.

4.
Bio Protoc ; 14(3): e4928, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379824

RESUMEN

Vertebrate embryogenesis is a highly dynamic process involving coordinated cell and tissue movements that generate the final embryonic body plan. Many of these movements are difficult to image at high resolution because they occur deep within the embryo along the midline, causing light scattering and requiring longer working distances. Here, we present an explant-based method to image transverse cross sections of living zebrafish embryos. This method allows for the capture of all cell movements at high-resolution throughout the embryonic trunk, including hard-to-image deep tissues. This technique offers an alternative to expensive or computationally difficult microscopy methods. Key features • Generates intact zebrafish explants with minimal tissue disturbance. • Allows for live imaging of deep tissues normally obscured by common confocal microscopy techniques. • Immobilizes tissues for extended periods required for time-lapse imaging. • Utilizes readily available reagents and tools, which can minimize the time and cost of the procedure.

5.
Influenza Other Respir Viruses ; 18(1): e13246, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38188372

RESUMEN

Background: In 2019, the Louisiana Department of Health reported an early influenza B/Victoria (B/VIC) virus outbreak. Method: As it was an atypically large outbreak, we deployed to Louisiana to investigate it using genomics and a triplex real-time RT-PCR assay to detect three antigenically distinct B/VIC lineage variant viruses. Results: The investigation indicated that B/VIC V1A.3 subclade, containing a three amino acid deletion in the hemagglutinin and known to be antigenically distinct to the B/Colorado/06/2017 vaccine virus, was the most prevalent circulating virus within the specimens evaluated (86/88 in real-time RT-PCR). Conclusion: This work underscores the value of portable platforms for rapid, onsite pathogen characterization.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Brotes de Enfermedades , Louisiana/epidemiología
6.
Microbiol Spectr ; 12(1): e0298223, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084972

RESUMEN

IMPORTANCE: The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Glicoproteínas de Membrana
7.
bioRxiv ; 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503202

RESUMEN

The sclerotome in vertebrates comprises an embryonic population of cellular progenitors that give rise to diverse adult tissues including the axial skeleton, ribs, intervertebral discs, connective tissue, and vascular smooth muscle. In the thorax, this cell population arises in the ventromedial region of each of the segmented tissue blocks known as somites. How and when sclerotome adult tissue fates are specified and how the gene signatures that predate those fates are regulated has not been well studied. We have identified a previously unknown role for Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) in regulating sclerotome patterning in zebrafish. Mechanistically, CaMKII regulates the activity of parallel signaling inputs that pattern sclerotome gene expression. In one downstream arm, CaMKII regulates distribution of the established sclerotome-inductive morphogen sonic hedgehog (Shh), and thus Shh-dependent sclerotome genes. In the second downstream arm, we show a previously unappreciated inductive requirement for Bmp signaling, where CaMKII activates expression of bmp4 and consequently Bmp activity. Bmp activates expression of a second subset of stereotypical sclerotome genes, while simultaneously repressing Shh-dependent markers. Our work demonstrates that CaMKII promotes parallel Bmp and Shh signaling as a mechanism to first promote global sclerotome specification, and that these pathways subsequently regionally activate and refine discrete compartmental genetic programs. Our work establishes how the earliest unique gene signatures that likely drive distinct cell behaviors and adult fates arise within the sclerotome.

8.
MMWR Morb Mortal Wkly Rep ; 72(24): 651-656, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319011

RESUMEN

CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , Genómica
9.
Cell Rep ; 40(12): 111358, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130489

RESUMEN

Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-ß2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-ß2-mediated signaling axis.


Asunto(s)
Actinas , Factor de Crecimiento Transformador beta2 , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Ratones , Pez Cebra
10.
Dev Biol ; 490: 134-143, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917935

RESUMEN

The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.


Asunto(s)
Proteína MioD , Factores Reguladores Miogénicos , Animales , Aorta/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Musculares/genética , Músculo Esquelético , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Emerg Infect Dis ; 28(7): 1442-1445, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551714

RESUMEN

To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Biología Computacional , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiología
12.
Dev Biol ; 487: 67-73, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525020

RESUMEN

Vertebrate embryos establish their primary body axis in a conserved progressive fashion from the anterior to the posterior. During this process, a posteriorly localized neuromesodermal cell population called neuromesodermal progenitors (NMps) plays a critical role in contributing new cells to the spinal cord and mesoderm as the embryo elongates. Defects in neuromesodermal population development can cause severe disruptions to the formation of the body posterior to the head. Given their importance during development and their potential, some of which has already been realized, for revealing new methods of in vitro tissue generation, there is great interest in better understanding NMp biology. The zebrafish model system has been instrumental in advancing our understanding of the molecular and cellular attributes of the NM cell population and its derivatives. In this review, we focus on our current understanding of the zebrafish NM population and its contribution to body axis formation, with particular emphasis on the lineage potency, morphogenesis, and niche factors that promote or inhibit differentiation.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Biología Molecular , Pez Cebra/genética
13.
Elife ; 112022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35137687

RESUMEN

Angioblasts that form the major axial blood vessels of the dorsal aorta and cardinal vein migrate toward the embryonic midline from distant lateral positions. Little is known about what controls the precise timing of angioblast migration and their final destination at the midline. Using zebrafish, we found that midline angioblast migration requires neighboring tissue rearrangements generated by somite morphogenesis. The somitic shape changes cause the adjacent notochord to separate from the underlying endoderm, creating a ventral midline cavity that provides a physical space for the angioblasts to migrate into. The anterior to posterior progression of midline angioblast migration is facilitated by retinoic acid-induced anterior to posterior somite maturation and the subsequent progressive opening of the ventral midline cavity. Our work demonstrates a critical role for somite morphogenesis in organizing surrounding tissues to facilitate notochord positioning and angioblast migration, which is ultimately responsible for creating a functional cardiovascular system.


Asunto(s)
Embrión no Mamífero/irrigación sanguínea , Desarrollo Embrionario/fisiología , Neovascularización Fisiológica/fisiología , Somitos/fisiología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Retinoides/farmacología , Tretinoina/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , p-Aminoazobenceno/análogos & derivados , p-Aminoazobenceno/farmacología
14.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143464

RESUMEN

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiología
15.
Semin Cell Dev Biol ; 127: 37-45, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34840081

RESUMEN

The discovery of mesoderm inducing signals helped usher in the era of molecular developmental biology, and today the mechanisms of mesoderm induction and patterning are still intensely studied. Mesoderm induction begins during gastrulation, but recent evidence in vertebrates shows that this process continues after gastrulation in a group of posteriorly localized cells called neuromesodermal progenitors (NMPs). NMPs reside within the post-gastrulation embryonic structure called the tailbud, where they make a lineage decision between ectoderm (spinal cord) and mesoderm. The majority of NMP-derived mesoderm generates somites, but also contributes to lateral mesoderm fates such as endothelium. The discovery of NMPs provides a new paradigm in which to study vertebrate mesoderm induction. This review will discuss mechanisms of mesoderm induction within NMPs, and how they have informed our understanding of mesoderm induction more broadly within vertebrates as well as animal species outside of the vertebrate lineage. Special focus will be given to the signaling networks underlying NMP-derived mesoderm induction and patterning, as well as emerging work on the significance of partial epithelial-mesenchymal states in coordinating cell fate and morphogenesis.


Asunto(s)
Tipificación del Cuerpo , Mesodermo , Animales , Diferenciación Celular , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Somitos
18.
Emerg Infect Dis ; 27(7): 1821-1830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34152951

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, and the outbreak rapidly evolved into the current coronavirus disease pandemic. SARS-CoV-2 is a respiratory virus that causes symptoms similar to those caused by influenza A and B viruses. On July 2, 2020, the US Food and Drug Administration granted emergency use authorization for in vitro diagnostic use of the Influenza SARS-CoV-2 Multiplex Assay. This assay detects influenza A virus at 102.0, influenza B virus at 102.2, and SARS-CoV-2 at 100.3 50% tissue culture or egg infectious dose, or as few as 5 RNA copies/reaction. The simultaneous detection and differentiation of these 3 major pathogens increases overall testing capacity, conserves resources, identifies co-infections, and enables efficient surveillance of influenza viruses and SARS-CoV-2.


Asunto(s)
COVID-19 , Virus de la Influenza A , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Reacción en Cadena de la Polimerasa Multiplex , Transcripción Reversa , SARS-CoV-2
19.
Elife ; 92020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33350383

RESUMEN

Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.


All living things are made up of cells that form the different tissues, organs and structures of an organism. The human body, for example, is thought to consist of some 37 trillion cells and harbor over 200 cell types. To maintain a working organism, cells divide to create new cells and replace the ones that have died. Cell division is a tightly controlled process consisting of several steps, and cells continuously face a Shakespearean dilemma of deciding whether to continue dividing (also known as cell proliferation) or to halt the process (known as quiescence). This difficult balancing act is critical during all stages of life, from embryonic development to tissue growth in an adult. Problems in the underlying pathways can result in diseases such as cancer. Cell division is driven by proteins called CDKs, which help cells to complete their cell cycle in the correct sequence. To gain more insight into this complex process, scientists have developed tools for monitoring CDKs. One such tool is a fluorescent biosensor, a molecule that can be inserted into cells that glows and moves in response to CDK activity. The biosensor can be studied and measured in each cell using a microscope. Adikes, Kohrman, Martinez et al. adapted and optimized an existing CDK biosensor to help study cell division and the switch between proliferation and quiescence in two common research organisms, the nematode Caenorhabditis elegans and the zebrafish. Analysis of this biosensor showed that CDK activity at the end of cell division is higher if the cells will divide again but is low if the cells are going to become quiescent. This could suggest that the decision of a cell between proliferation and quiescence may happen earlier than expected. The optimized biosensor is sensitive enough to detect these differences and can even measure variations that influence proliferation in a region on C. elegans that was once thought to be unchanging. The development of this biosensor provides a useful research tool that could be used in other living organisms. Many research questions relate to cell division and so the applications of this tool are wide ranging.


Asunto(s)
Técnicas Biosensibles/métodos , Caenorhabditis elegans/citología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiología , División Celular , Proliferación Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo
20.
Cell Rep ; 33(4): 108311, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33113369

RESUMEN

Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.


Asunto(s)
Mesodermo/metabolismo , Factores de Transcripción SOXB1/metabolismo , Vía de Señalización Wnt , Animales , Humanos , Morfogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...