Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 28(8): 1235-1241.e5, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33730553

RESUMEN

The multi-domain scaffolding protein Scribble (Scrib) regulates cell polarity and growth signaling at cell-cell junctions. In epithelial cancers, Scrib mislocalization and overexpression paradoxically transform Scrib from a basolateral tumor suppressor to a cytosolic driver of tumorigenicity. To address the function of Scrib (mis)localization, a Scrib-HaloTag fusion was genome engineered in polarized epithelial cells. Expression of the epithelial to mesenchymal transcription factor Snail displaced Scrib-HaloTag from cell junctions, mirroring the mislocalization observed in cancers. Interestingly, Snail expression promotes Yes-associated protein-1 (YAP1) nuclear localization independent of hippo pathway-regulated YAP-S127 phosphorylation. Furthermore, Scrib HaloPROTAC degradation attenuates YAP1-Y357 phosphorylation. Halo-ligand affinity purification mass spectrometry analysis identified the Src family kinase YES1 as a mislocalized Scrib interaction partner, preferentially recruiting the kinase active and open global conformation (αC helix in). Altogether, mislocalized Scrib enhances YAP1 phosphorylation by scaffolding active YES1.


Asunto(s)
Proteínas Proto-Oncogénicas c-yes/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Células Cultivadas , Perros , Femenino , Humanos , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-yes/genética , Proteínas Señalizadoras YAP/genética
2.
J Am Chem Soc ; 142(4): 1801-1810, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31881155

RESUMEN

Heteroaromatic sulfones react with cysteine via nucleophilic aromatic substitution, providing a mechanistically selective and irreversible scaffold for cysteine conjugation. Here we evaluate a library of heteroaromatic sulfides with different oxidation states, heteroatom substitutions, and a series of electron-donating and electron-withdrawing substituents. Select substitutions profoundly influence reactivity and stability compared to conventional cysteine conjugation reagents, increasing the reaction rate by >3 orders of magnitude. The findings establish a series of synthetically accessible electrophilic scaffolds tunable across multiple centers. New electrophiles and their corresponding alkyne conjugates were profiled directly in cultured cells, achieving thiol saturation in a few minutes at submillimolar concentrations. Direct addition of desthiobiotin-functionalized probes to cultured cells simplified enrichment and elution to enable the mass spectrometry discovery of >3000 reactive and/or accessible thiols labeled in their native cellular environments in a fraction of the standard analysis time. Surprisingly, only half of the annotated cysteines were identified by both iodoacetamide-desthiobiotin and methylsulfonylbenzothiazole-desthiobiotin in replicate experiments, demonstrating complementary detection by mass spectrometry analysis. These probes offer advantages over existing cysteine alkylation reagents, including accelerated reaction rates, improved stability, and robust ionization for mass spectrometry applications. Overall, heteroaromatic sulfones provide modular tunability, shifted chromatographic elution times, and superior in-cell cysteine profiling for in-depth proteome-wide analysis and covalent ligand discovery.


Asunto(s)
Cisteína/química , Sulfonas/química , Alquinos/química , Indicadores y Reactivos/química , Sondas Moleculares/química , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Cell Chem Biol ; 26(12): 1716-1724.e9, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31631010

RESUMEN

Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferroptosis, and other pathways. CIL56-induced cell death requires a catalytically active protein S-acyltransferase complex comprising the enzyme ZDHHC5 and an accessory subunit GOLGA7. The ZDHHC5-GOLGA7 complex is mutually stabilizing and localizes to the plasma membrane. CIL56 inhibits anterograde protein transport from the Golgi apparatus, which may be lethal in the context of ongoing ZDHHC5-GOLGA7 complex-dependent retrograde protein trafficking from the plasma membrane to internal sites. Other oxime-containing small molecules, structurally distinct from CIL56, may trigger cell death through the same pathway. These results define an unconventional form of nonapoptotic cell death regulated by protein S-acylation.


Asunto(s)
Aciltransferasas/metabolismo , Muerte Celular , Proteínas de la Matriz de Golgi/metabolismo , Acilación , Aciltransferasas/química , Aciltransferasas/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Membrana Celular/metabolismo , Compuestos de Anillos Fusionados/química , Compuestos de Anillos Fusionados/farmacología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi/química , Proteínas de la Matriz de Golgi/genética , Humanos , Ratones , Oximas/química , Oximas/farmacología , Proteína S/metabolismo , Transporte de Proteínas/efectos de los fármacos
4.
Methods Mol Biol ; 2009: 71-79, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152396

RESUMEN

As the 10-year anniversary of their first introduction approaches, alkynyl fatty acids have revolutionized the analysis of S-palmitoylation dynamics, acting as functional mimics incorporated into native modification sites in cultured cells. The alkyne functional group provides a robust handle for bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) to reporter-linked azides, forming a stable conjugate for enrichment for mass spectrometry analysis or in-gel fluorescence. Importantly, metabolic labeling enables time-dependent analysis of S-palmitoylation dynamics, which can be used to profile incorporation and turnover rates across the proteome. Here we present a protocol for cell labeling, click chemistry conjugation, enrichment, and isobaric tandem mass tag labeling for quantitative mass spectrometry analysis of protein S-palmitoylation.


Asunto(s)
Lipoilación , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Coloración y Etiquetado/métodos , Línea Celular , Cobre/química , Reacción de Cicloadición , Humanos
5.
ACS Pharmacol Transl Sci ; 2(2): 92-100, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32039344

RESUMEN

A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-ß- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.

6.
Anal Chem ; 90(16): 9682-9686, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30063332

RESUMEN

Tandem mass spectrometry (MS/MS) is the primary method for discovering, identifying, and localizing post-translational modifications (PTMs) in proteins. However, conventional positive ion mode collision induced dissociation (CID)-based MS/MS often fails to yield site-specific information for labile and acidic modifications due to low ionization efficiency in positive ion mode and/or preferential PTM loss. While a number of alternative methods have been developed to address this issue, most require specialized instrumentation or indirect detection. In this work, we present an amine-reactive TEMPO-based free radical initiated peptide sequencing (FRIPS) approach for negative ion mode analysis of phosphorylated and sulfated peptides. FRIPS-based fragmentation generates sequence informative ions for both phosphorylated and sulfated peptides with no significant PTM loss. Furthermore, FRIPS is compared to positive ion mode CID, electron transfer dissociation (ETD), as well as negative ion mode electron capture dissociation (niECD) and CID, both in terms of sequence coverage and fragmentation efficiency for phospho- and sulfo-peptides. Because FRIPS-based fragmentation has no particular instrumentation requirements and shows limited PTM loss, we propose this approach as a promising alternative to current techniques for analysis of labile and acidic PTMs.


Asunto(s)
Radicales Libres/química , Oligopéptidos/análisis , Fosfopéptidos/análisis , Colecistoquinina/análisis , Colecistoquinina/química , Hirudinas/análisis , Hirudinas/química , Oligopéptidos/química , Fosfopéptidos/química , Fosforilación , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de Proteína , Espectrometría de Masas en Tándem/métodos
7.
Anal Chem ; 90(15): 8722-8726, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29989796

RESUMEN

Quantitative mass spectrometry-based protein profiling is widely used to measure protein levels across different treatments or disease states, yet current mass spectrometry acquisition methods present distinct limitations. While data-independent acquisition (DIA) bypasses the stochastic nature of data-dependent acquisition (DDA), fragment spectra derived from DIA are often complex and challenging to deconvolve. In-line ion mobility separation (IMS) adds an additional dimension to increase peak capacity for more efficient product ion assignment. As a similar strategy to sequential window acquisition methods (SWATH), IMS-enabled DIA methods rival DDA methods for protein annotation. Here we evaluate IMS-DIA quantitative accuracy using stable isotope labeling by amino acids in cell culture (SILAC). Since SILAC analysis doubles the sample complexity, we find that IMS-DIA analysis is not sufficiently accurate for sensitive quantitation. However, SILAC precursor pairs share common retention and drift times, and both species cofragment to yield multiple quantifiable isotopic y-ion peak pairs. Since y-ion SILAC ratios are intrinsic for each quantified precursor, combined MS1 and y-ion ratio analysis significantly increases the total number of measurements. With increased sampling, we present DIA-SIFT ( SILAC Intrinsic Filtering Tool), a simple statistical algorithm to identify and eliminate poorly quantified MS1 and/or MS2 events. DIA-SIFT combines both MS1 and y-ion ratios, removes outliers, and provides more accurate and precise quantitation (<15% CV) without removing any proteins from the final analysis. Overall, pooled MS1 and MS2 quantitation increases sampling in IMS-DIA SILAC analyses for accurate and precise quantitation.


Asunto(s)
Aminoácidos/análisis , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Técnicas de Cultivo de Célula/métodos , Células HEK293 , Humanos , Marcaje Isotópico/métodos , Programas Informáticos
8.
ACS Chem Biol ; 13(6): 1560-1568, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29733200

RESUMEN

S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1-/-/APT2-/- mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.


Asunto(s)
Proteoma/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados/química , Células HEK293 , Humanos , Indicadores y Reactivos/química , Cinética , Lipoilación , Espectrometría de Masas/métodos , Organofluorofosfonatos/farmacología , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Tioléster Hidrolasas/antagonistas & inhibidores
9.
Crit Rev Biochem Mol Biol ; 53(1): 83-98, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239216

RESUMEN

Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.


Asunto(s)
Lipoilación , Monoacilglicerol Lipasas/metabolismo , Procesamiento Proteico-Postraduccional , Serina Proteasas/metabolismo , Tioléster Hidrolasas/metabolismo , Animales , Humanos , Modelos Moleculares , Monoacilglicerol Lipasas/química , Proteínas/química , Proteínas/metabolismo , Serina Proteasas/química , Tioléster Hidrolasas/química
10.
J Am Chem Soc ; 139(45): 16222-16227, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29035536

RESUMEN

The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme-substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, p-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery.


Asunto(s)
Dominio Catalítico/genética , Dominio Catalítico/efectos de la radiación , Reactivos de Enlaces Cruzados/efectos de la radiación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Procesos Fotoquímicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Acetilación , Benzofenonas/metabolismo , Extractos Celulares , Histona Desacetilasas/química , Humanos , Lisina/química , Lisina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Proteómica , Proteínas Represoras/química , Reproducibilidad de los Resultados , Especificidad por Sustrato
11.
Chembiochem ; 18(20): 2028-2032, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28809078

RESUMEN

Cysteine residues are susceptible to oxidation to form S-sulfinyl (R-SO2 H) and S-sulfonyl (R-SO3 H) post-translational modifications. Here we present a simple bioconjugation strategy to label S-sulfinated proteins by using reporter-linked maleimides. After alkylation of free thiols with iodoacetamide, S-sulfinated cysteines react with maleimide to form a sulfone Michael adduct that remains stable under acidic conditions. Using this sequential alkylation strategy, we demonstrate differential S-sulfination across mouse tissue homogenates, as well as enhanced S-sulfination following pharmacological induction of endoplasmic reticulum stress, lipopolysaccharide stimulation, and inhibitors of the electron transport chain. Overall, this study reveals a broadened profile of maleimide reactivity across cysteine modifications, and outlines a simple method for profiling the physiological role of cysteine S-sulfination in disease.


Asunto(s)
Maleimidas/química , Sondas Moleculares/química , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfínicos/metabolismo , Azufre/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica
12.
Anal Chem ; 89(16): 8304-8310, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708386

RESUMEN

Protein S-sulfinylation (R-SO2-) and S-sulfonylation (R-SO3-) are irreversible oxidative post-translational modifications of cysteine residues. Greater than 5% of cysteines are reported to occupy these higher oxidation states, which effectively inactivate the corresponding thiols and alter the electronic and physical properties of modified proteins. Such higher oxidation states are reached after excessive exposure to cellular oxidants, and accumulate across different disease states. Despite widespread and functionally relevant cysteine oxidation across the proteome, there are currently no robust methods to profile higher order cysteine oxidation. Traditional data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods generally miss low-occupancy modifications in complex analyses. Here, we present a data-independent acquisition (DIA) LC/MS-based approach, leveraging the high IR absorbance of sulfoxides at 10.6 µm, for selective dissociation and discovery of S-sulfonated peptides. Across peptide standards and protein digests, we demonstrate selective infrared multiphoton dissociation (IRMPD) of S-sulfonated peptides in the background of unmodified peptides. This selective DIA IRMPD LC/MS-based approach allows identification and annotation of S-sulfonated peptides across complex mixtures while providing sufficient sequence information to localize the modification site.


Asunto(s)
Cisteína/análogos & derivados , Péptidos/química , Cisteína/química , Cisteína/efectos de la radiación , Rayos Infrarrojos , Espectrometría de Masas/métodos , Oxidación-Reducción , Péptidos/metabolismo , Péptidos/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación
13.
Chem Commun (Camb) ; 53(53): 7385-7388, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28613292

RESUMEN

Here we report a ratiometric fluorescent probe for chemoselective conjugation to sulfenic acids in living cells. Our approach couples an α-fluoro-substituted dimedone to an aminonaphthalene fluorophore (F-DiNap), which upon sulfenic acid conjugation is locked as the 1,3-diketone, changing the fluorophore excitation. F-DiNap reacts with S-sulfenylated proteins at equivalent rates to current probes, but the α-fluorine substitution blocks side-reactions with biological aldehydes.

14.
Anal Chem ; 89(11): 5669-5672, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28471653

RESUMEN

High mass accuracy, data-dependent acquisition is the current standard method in mass spectrometry-based peptide annotation and quantification. In high complexity samples, limited instrument scan speeds often result in under-sampling. In contrast, all-ion data-independent acquisition methods bypass precursor selection, alternating high and low collision energies to analyze product and precursor ions across wide mass ranges. Despite capturing data for all events, peptide annotation is limited by inadequate alignment algorithms or overlapping ions. Ion mobility separation can add an orthogonal analytical dimension, reducing ion interference to improve reproducibility, peak capacity, and peptide identifications to rival modern hybrid quadrupole orbitrap systems. Despite the advantages of ion mobility separation in complex proteomics analyses, there has been no quantitative measure of ion mobility resolution in a complex proteomic sample. Here, we present TWIMExtract, a data extraction tool to export defined slices of liquid chromatography/ion mobility/mass spectrometry (LC-IM-MS) data, providing a route to quantify ion mobility resolution from a commercial traveling-wave ion mobility time-of-flight mass spectrometer. Using standard traveling-wave ion mobility parameters (600 m/s, 40 V), 90% of the annotated peptides occupied just 23% of the ion mobility drift space, yet inclusion of ion mobility nearly doubled the overall peak capacity. Relative to fixed velocity traveling-wave ion mobility settings, ramping the traveling-wave velocity increased drift space occupancy, amplifying resolution by 16%, peak capacity by nearly 50%, and peptide/protein identifications by 40%. Overall, variable-velocity traveling-wave ion mobility-mass spectrometry significantly enhances proteomics analysis in all-ion fragmentation acquisition.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteómica/métodos , Cromatografía Liquida , Células HeLa , Humanos , Péptidos/análisis , Proteínas/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
15.
J Biol Chem ; 292(12): 4766-4769, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28188288

RESUMEN

Itaconic acid is an important metabolite produced by macrophages after stimulation with LPS. The role of itaconate in the inflammatory cascade is unclear. Here we used [13C]itaconate and dimethyl [13C]itaconate (DMI) to probe itaconate metabolism, and find that [13C]DMI is not metabolized to itaconate. [13C]Itaconate in the cell culture medium leads to elevated intracellular levels of unlabeled succinate, with no evidence of intracellular uptake. The goal of this study is to encourage the development of effective pro-drug strategies to increase the intracellular levels of itaconate, which will enable more conclusive analysis of its action on macrophages and other cell and tissue types.


Asunto(s)
Inflamación/metabolismo , Macrófagos/metabolismo , Metaboloma , Succinatos/metabolismo , Animales , Células Cultivadas , Lipopolisacáridos/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Ácido Succínico/metabolismo
16.
ACS Med Chem Lett ; 8(2): 215-220, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197315

RESUMEN

Activity-based protein profiling (ABPP) has revolutionized the discovery and optimization of active-site ligands across distinct enzyme families, providing a robust platform for in-class selectivity profiling. Nonetheless, this approach is less straightforward for profiling reversible inhibitors and does not access proteins outside the ABPP probe's target profile. While the active-site competitive acyl protein thioesterase 2 inhibitor ML349 (Ki = 120 nM) is highly selective within the serine hydrolase enzyme family, it could still interact with other cellular targets. Here we present a chemoproteomic workflow to enrich and profile candidate ML349-binding proteins. In human cell lysates, biotinylated-ML349 enriches a recurring set of proteins, including metabolite kinases and flavin-dependent oxidoreductases that are potentially enhanced by avidity-driven multimeric interactions. Confirmatory assays by native mass spectrometry and fluorescence polarization quickly rank-ordered these weak off-targets, providing justification to explore ligand interactions and stoichiometry beyond ABPP.

17.
Cell Chem Biol ; 24(1): 87-97, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28065656

RESUMEN

The multidomain scaffolding protein Scribble (Scrib) organizes key signaling complexes to specify basolateral cell polarity and suppress aberrant growth. In many human cancers, genetically normal Scrib mislocalizes from cell-cell junctions to the cytosol, correlating with enhanced growth signaling and malignancy. Here we confirm that expression of the epithelial-to-mesenchymal transcription factor (EMT-TF) Snail in benign epithelial cells leads to Scrib displacement from the plasma membrane, mimicking the mislocalization observed in aggressive cancers. Upon further examination, Snail promotes a transcriptional program that targets genes in the palmitoylation cycle, repressing many protein acyl transferases and elevating expression and activity of protein acyl thioesterase 2 (APT2). APT2 isoform-selective inhibition or knockdown rescued Scrib membrane localization and palmitoylation while attenuating MEK activation. Overall, inhibiting APT2 restores balance to the Scrib palmitoylation cycle, promoting membrane re-localization and growth attenuation. These findings emphasize the importance of S-palmitoylation as a post-translational gatekeeper of cell polarity-mediated tumor suppression.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción de la Familia Snail/genética , Tioléster Hidrolasas/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Lipoilación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
18.
ACS Chem Biol ; 11(12): 3374-3382, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27748579

RESUMEN

Post-translational S-palmitoylation directs the trafficking and membrane localization of hundreds of cellular proteins, often involving a coordinated palmitoylation cycle that requires both protein acyl transferases (PATs) and acyl protein thioesterases (APTs) to actively redistribute S-palmitoylated proteins toward different cellular membrane compartments. This process is necessary for the trafficking and oncogenic signaling of S-palmitoylated Ras isoforms, and potentially many peripheral membrane proteins. The depalmitoylating enzymes APT1 and APT2 are separately conserved in all vertebrates, suggesting unique functional roles for each enzyme. The recent discovery of the APT isoform-selective inhibitors ML348 and ML349 has opened new possibilities to probe the function of each enzyme, yet it remains unclear how each inhibitor achieves orthogonal inhibition. Herein, we report the high-resolution structure of human APT2 in complex with ML349 (1.64 Å), as well as the complementary structure of human APT1 bound to ML348 (1.55 Å). Although the overall peptide backbone structures are nearly identical, each inhibitor adopts a distinct conformation within each active site. In APT1, the trifluoromethyl group of ML348 is positioned above the catalytic triad, but in APT2, the sulfonyl group of ML349 forms hydrogen bonds with active site resident waters to indirectly engage the catalytic triad and oxyanion hole. Reciprocal mutagenesis and activity profiling revealed several differing residues surrounding the active site that serve as critical gatekeepers for isoform accessibility and dynamics. Structural and biochemical analysis suggests the inhibitors occupy a putative acyl-binding region, establishing the mechanism for isoform-specific inhibition, hydrolysis of acyl substrates, and structural orthogonality important for future probe development.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Tioléster Hidrolasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo
20.
J Biol Chem ; 291(39): 20295-20302, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27528603

RESUMEN

Heterotrimeric G proteins are localized to the plasma membrane where they transduce extracellular signals to intracellular effectors. G proteins also act at intracellular locations, and can translocate between cellular compartments. For example, Gαs can leave the plasma membrane and move to the cell interior after activation. However, the mechanism of Gαs translocation and its intracellular destination are not known. Here we use bioluminescence resonance energy transfer (BRET) to show that after activation, Gαs rapidly associates with the endoplasmic reticulum, mitochondria, and endosomes, consistent with indiscriminate sampling of intracellular membranes from the cytosol rather than transport via a specific vesicular pathway. The primary source of Gαs for endosomal compartments is constitutive endocytosis rather than activity-dependent internalization. Recycling of Gαs to the plasma membrane is complete 25 min after stimulation is discontinued. We also show that an acylation-deacylation cycle is important for the steady-state localization of Gαs at the plasma membrane, but our results do not support a role for deacylation in activity-dependent Gαs internalization.


Asunto(s)
Cromograninas/metabolismo , Endocitosis/fisiología , Retículo Endoplásmico/enzimología , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Membranas Intracelulares/enzimología , Acilación , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Cromograninas/genética , Retículo Endoplásmico/genética , Activación Enzimática/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Células HEK293 , Humanos , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...