Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Hum Genet ; 111(1): 70-81, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38091987

RESUMEN

Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Humanos , Estudios Retrospectivos , Mutación/genética , Epilepsia/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
2.
Genet Med ; 26(2): 101029, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982373

RESUMEN

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Alelos , Bases de Datos Genéticas
5.
medRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066232

RESUMEN

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

6.
JAMA Pediatr ; 177(5): 472-478, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877506

RESUMEN

Importance: Exome sequencing is a first-tier diagnostic test for individuals with neurodevelopmental disorders, including intellectual disability/developmental delay and autism spectrum disorder; however, this recommendation does not include cerebral palsy. Objective: To evaluate if the diagnostic yield of exome or genome sequencing in cerebral palsy is similar to that of other neurodevelopmental disorders. Data Sources: The study team searched PubMed for studies published between 2013 and 2022 using cerebral palsy and genetic testing terms. Data were analyzed during March 2022. Study Selection: Studies performing exome or genome sequencing in at least 10 participants with cerebral palsy were included. Studies with fewer than 10 individuals and studies reporting variants detected by other genetic tests were excluded. Consensus review was performed. The initial search identified 148 studies, of which 13 met inclusion criteria. Data Extraction and Synthesis: Data were extracted by 2 investigators and pooled using a random-effects meta-analysis. Incidence rates with corresponding 95% CIs and prediction intervals were calculated. Publication bias was evaluated by the Egger test. Variability between included studies was assessed via heterogeneity tests using the I2 statistic. Main Outcomes and Measures: The primary outcome was the pooled diagnostic yield (rate of pathogenic/likely pathogenic variants) across studies. Subgroup analyses were performed based on population age and on the use of exclusion criteria for patient selection. Results: Thirteen studies were included consisting of 2612 individuals with cerebral palsy. The overall diagnostic yield was 31.1% (95% CI, 24.2%-38.6%; I2 = 91%). The yield was higher in pediatric populations (34.8%; 95% CI, 28.3%-41.5%) than adult populations (26.9%; 95% CI, 1.2%-68.8%) and higher among studies that used exclusion criteria for patient selection (42.1%; 95% CI, 36.0%-48.2%) than those that did not (20.7%; 95% CI, 12.3%-30.5%). Conclusions and Relevance: In this systematic review and meta-analysis, the genetic diagnostic yield in cerebral palsy was similar to that of other neurodevelopmental disorders for which exome sequencing is recommended as standard of care. Data from this meta-analysis provide evidence to support the inclusion of cerebral palsy in the current recommendation of exome sequencing in the diagnostic evaluation of individuals with neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Parálisis Cerebral , Niño , Adulto , Humanos , Secuenciación del Exoma , Pruebas Genéticas , Genómica
7.
Front Genet ; 13: 883073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692820

RESUMEN

Introduction: DNA-based population screening has been proposed as a public health solution to identify individuals at risk for serious health conditions who otherwise may not present for medical care. The clinical utility and public health impact of DNA-based population screening is a subject of active investigation. Geisinger, an integrated healthcare delivery system, was one of the first healthcare systems to implement DNA screening programs (MyCode Community Health Initiative (MyCode) and clinical DNA screening pilot) that leverage exome data to identify individuals at risk for developing conditions with potential clinical actionability. Here, we demonstrate the use of an implementation science framework, RE-AIM (Reach, Effectiveness, Adoption, Implementation and Maintenance), to conduct a post-hoc evaluation and report outcomes from these two programs to inform the potential impact of DNA-based population screening. Methods: Reach and Effectiveness outcomes were determined from the MyCode research program, while Adoption and Implementation outcomes were measured using the clinical DNA screening pilot. Reach was defined as the number of patients who were offered and consented to participate in MyCode. Effectiveness of DNA screening was measured by reviewing MyCode program publications and synthesizing findings from themes. Adoption was measured by the total number of DNA screening tests ordered by clinicians at the clinical pilot sites. Implementation was assessed by interviewing a subset of clinical pilot clinicians about the deployment of and recommended adaptations to the pilot that could inform future program dissemination. Results: Reach: As of August 2020, 68% (215,078/316,612) of individuals approached to participate in the MyCode program consented. Effectiveness: Published evidence reported from MyCode demonstrates that DNA screening identifies at-risk individuals more comprehensively than clinical ascertainment based on phenotypes or personal/family history. Adoption: From July 2018 to June 2021, a total of 1,026 clinical DNA screening tests were ordered by 60 clinicians across the three pilot clinic sites. Implementation: Interviews with 14 clinicians practicing at the pilot clinic sites revealed motivation to provide patients with DNA screening results and yielded future implementation strategies. Conclusion: The RE-AIM framework offers a pragmatic solution to organize, analyze, and report outcomes across differently resourced and designed precision health programs that include genomic sequencing and return of clinically actionable genomic information.

8.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35507016

RESUMEN

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Asunto(s)
Bases de Datos Genéticas , Genómica , Pruebas Genéticas , Variación Genética , Humanos
9.
JACC CardioOncol ; 3(4): 550-561, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34746851

RESUMEN

BACKGROUND: New treatments for transthyretin amyloidosis improve survival, but diagnosis remains challenging. Pathogenic or likely pathogenic (P/LP) variants in the transthyretin (TTR) gene are one cause of transthyretin amyloidosis, and genomic screening has been proposed to identify at-risk individuals. However, data on disease features and penetrance are lacking to inform the utility of such population-based genomic screening for TTR. OBJECTIVES: This study characterized the prevalence of P/LP variants in TTR identified through exome sequencing and the burden of associated disease from electronic health records for individuals with these variants from a large (N = 134,753), primarily European-ancestry cohort. METHODS: We compared frequencies of common disease features and cardiac imaging findings between individuals with and without P/LP TTR variants. RESULTS: We identified 157 of 134,753 (0.12%) individuals with P/LP TTR variants (43% male, median age 52 [Q1-Q3: 37-61] years). Seven P/LP variants accounted for all observations, the majority being V122I (p.V142I; 113, 0.08%). Approximately 60% (n = 91) of individuals with P/LP TTR variants (all V122I) had African ancestry. Diagnoses of amyloidosis were limited (2 of 157 patients), although related heart disease diagnoses, including cardiomyopathy and heart failure, were significantly increased in individuals with P/LP TTR variants who were aged >60 years. Fourteen percent (7 of 49) of individuals aged ≥60 or older with a P/LP TTR variant had heart disease and ventricular septal thickness >1.2 cm, only one of whom was diagnosed with amyloidosis. CONCLUSIONS: Individuals with P/LP TTR variants identified by genomic screening have increased odds of heart disease after age 60 years, although amyloidosis is likely underdiagnosed without knowledge of the genetic variant.

10.
Ann N Y Acad Sci ; 1506(1): 5-17, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342000

RESUMEN

Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants" a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.


Asunto(s)
Congresos como Asunto/tendencias , Variación Genética/genética , Trastornos Mentales/genética , Trastornos del Neurodesarrollo/genética , Penetrancia , Informe de Investigación , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/psicología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/psicología
11.
Am J Med Genet C Semin Med Genet ; 187(1): 83-94, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33576083

RESUMEN

Exome and genome sequencing are increasingly utilized in research studies and clinical care and can provide clinically relevant information beyond the initial intent for sequencing, including medically actionable secondary findings. Despite ongoing debate about sharing this information with patients and participants, a growing number of clinical laboratories and research programs routinely report secondary findings that increase the risk for selected diseases. Recently, there has been a push to maximize the potential benefit of this practice by implementing proactive genomic screening at the population level irrespective of medical history, but the feasibility of deploying population-scale proactive genomic screening requires scaling key elements of the genomic data evaluation process. Herein, we describe the motivation, development, and implementation of a population-scale variant-first screening pipeline combining bioinformatics-based filtering with a manual review process to screen for clinically relevant findings in research exomes generated through the DiscovEHR collaboration within Geisinger's MyCode® research project. Consistent with other studies, this pipeline yields a screen-positive detection rate between 2.1 and 2.6% (depending on inclusion of those with prior indication-based testing) in 130,048 adult MyCode patient-participants screened for clinically relevant findings in 60 genes. Our variant-first pipeline affords cost and time savings by filtering out negative cases, thereby avoiding analysis of each exome one-by-one, as typically employed in the diagnostic setting. While research is still needed to fully appreciate the benefits of population genomic screening, MyCode provides the first demonstration of a program at scale to help shape how population genomic screening is integrated into routine clinical care.


Asunto(s)
Secuenciación del Exoma , Exoma , Genómica , Adulto , Humanos , Estudios Longitudinales
12.
JAMA ; 325(5): 467-475, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33528536

RESUMEN

Importance: Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. Objective: To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. Design, Setting, and Participants: A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. Exposures: Exome sequencing with copy number variant detection. Main Outcomes and Measures: The primary outcome was the molecular diagnostic yield of exome sequencing. Results: Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). Conclusions and Relevance: Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.


Asunto(s)
Parálisis Cerebral/genética , Secuenciación del Exoma , Mutación , Adolescente , Adulto , Parálisis Cerebral/complicaciones , Niño , Preescolar , Estudios Transversales , Femenino , Pruebas Genéticas , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Prevalencia , Estudios Retrospectivos
14.
Genet Med ; 22(11): 1874-1882, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32601386

RESUMEN

PURPOSE: Three genetic conditions-hereditary breast and ovarian cancer syndrome, Lynch syndrome, and familial hypercholesterolemia-have tier 1 evidence for interventions that reduce morbidity and mortality, prompting proposals to screen unselected populations for these conditions. We examined the impact of genomic screening on risk management and early detection in an unselected population. METHODS: Observational study of electronic health records (EHR) among individuals in whom a pathogenic/likely pathogenic variant in a tier 1 gene was discovered through Geisinger's MyCode project. EHR of all eligible participants was evaluated for a prior genetic diagnosis and, among participants without such a diagnosis, relevant personal/family history, postdisclosure clinical diagnoses, and postdisclosure risk management. RESULTS: Eighty-seven percent of participants (305/351) did not have a prior genetic diagnosis of their tier 1 result. Of these, 65% had EHR evidence of relevant personal and/or family history of disease. Of 255 individuals eligible to have risk management, 70% (n = 179) had a recommended risk management procedure after results disclosure. Thirteen percent of participants (41/305) received a relevant clinical diagnosis after results disclosure. CONCLUSION: Genomic screening programs can identify previously unrecognized individuals at increased risk of cancer and heart disease and facilitate risk management and early cancer detection.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Síndrome de Cáncer de Mama y Ovario Hereditario , Hiperlipoproteinemia Tipo II , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Hiperlipoproteinemia Tipo II/genética
15.
Curr Opin Genet Dev ; 65: 47-52, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32544666

RESUMEN

Developmental brain disorders (DBD), including autism spectrum disorder, intellectual disability, and schizophrenia, are clinically defined and etiologically heterogeneous conditions with a wide range of outcomes. Rare pathogenic copy number and single nucleotide genomic variants are among the most common known etiologies, with diagnostic yields approaching for some DBD cohorts. Incorporating genetic testing into the care of adult patients with DBD, paired with targeted genetic counseling and family cascade testing, may increase self-advocacy and decrease stigma. In the long-term, breakthroughs in the understanding of DBD pathophysiology will hinge on the identification, engagement, and study of individuals with rare genetic DBD etiologies, consistent with successful precision medicine approaches to the treatment of cancer and cardiovascular disease.


Asunto(s)
Encefalopatías/diagnóstico , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Genómica/métodos , Medicina de Precisión , Adulto , Encefalopatías/genética , Humanos
16.
Nat Med ; 25(10): 1477-1487, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548702

RESUMEN

De novo and inherited rare genetic disorders (RGDs) are a major cause of human morbidity, frequently involving neuropsychiatric symptoms. Recent advances in genomic technologies and data sharing have revolutionized the identification and diagnosis of RGDs, presenting an opportunity to elucidate the mechanisms underlying neuropsychiatric disorders by investigating the pathophysiology of high-penetrance genetic risk factors. Here we seek out the best path forward for achieving these goals. We think future research will require consistent approaches across multiple RGDs and developmental stages, involving both the characterization of shared neuropsychiatric dimensions in humans and the identification of neurobiological commonalities in model systems. A coordinated and concerted effort across patients, families, researchers, clinicians and institutions, including rapid and broad sharing of data, is now needed to translate these discoveries into urgently needed therapies.


Asunto(s)
Trastornos Mentales/genética , Neuropsiquiatría/tendencias , Enfermedades Raras/genética , Genómica , Humanos , Trastornos Mentales/terapia , Enfermedades Raras/terapia
17.
Genet Med ; 21(11): 2413-2421, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31182824

RESUMEN

PURPOSE: For neurodevelopmental disorders (NDDs), etiological evaluation can be a diagnostic odyssey involving numerous genetic tests, underscoring the need to develop a streamlined algorithm maximizing molecular diagnostic yield for this clinical indication. Our objective was to compare the yield of exome sequencing (ES) with that of chromosomal microarray (CMA), the current first-tier test for NDDs. METHODS: We performed a PubMed scoping review and meta-analysis investigating the diagnostic yield of ES for NDDs as the basis of a consensus development conference. We defined NDD as global developmental delay, intellectual disability, and/or autism spectrum disorder. The consensus development conference included input from genetics professionals, pediatric neurologists, and developmental behavioral pediatricians. RESULTS: After applying strict inclusion/exclusion criteria, we identified 30 articles with data on molecular diagnostic yield in individuals with isolated NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated conditions. ES yield for NDDs is markedly greater than previous studies of CMA (15-20%). CONCLUSION: Our review demonstrates that ES consistently outperforms CMA for evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at the beginning of the evaluation of unexplained NDDs.


Asunto(s)
Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Pruebas Diagnósticas de Rutina/métodos , Exoma/genética , Pruebas Genéticas/métodos , Humanos , Discapacidad Intelectual/genética , Secuenciación del Exoma/métodos
18.
Genet Med ; 21(4): 987-993, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181607

RESUMEN

The Clinical Genome Resource (ClinGen) is supported by the National Institutes of Health (NIH) to develop expertly curated and freely accessible resources defining the clinical relevance of genes and variants for use in precision medicine and research. To facilitate expert input, ClinGen has formed Clinical Domain Working Groups (CDWGs) to leverage the collective knowledge of clinicians, laboratory diagnosticians, and researchers. In the initial phase of ClinGen, CDWGs were launched in the cardiovascular, hereditary cancer, and inborn errors of metabolism clinical fields. These early CDWGs established the infrastructure necessary to implement standardized processes developed or adopted by ClinGen working groups for the interpretation of gene-disease associations and variant pathogenicity, and provided a sustainable model for the formation of future disease-focused curation groups. The establishment of CDWGs requires recruitment of international experts to broadly represent the interests of their field and ensure that assertions made are reliable and widely accepted. Building on the successes, challenges, and trade-offs made in establishing the original CDWGs, ClinGen has developed standard operating procedures for the development of CDWGs in new clinical domains, while maximizing efforts to scale up curation and facilitate involvement of external groups who wish to utilize ClinGen methods and infrastructure for expert curation.


Asunto(s)
Bases de Datos Genéticas , Genética Médica/tendencias , Genoma Humano/genética , Genómica/tendencias , Variación Genética/genética , Humanos , Difusión de la Información , Medicina de Precisión
19.
Hum Mutat ; 39(11): 1614-1622, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311389

RESUMEN

Genome-scale sequencing creates vast amounts of genomic data, increasing the challenge of clinical sequence variant interpretation. The demand for high-quality interpretation requires multiple specialties to join forces to accelerate the interpretation of sequence variant pathogenicity. With over 600 international members including clinicians, researchers, and laboratory diagnosticians, the Clinical Genome Resource (ClinGen), funded by the National Institutes of Health, is forming expert groups to systematically evaluate variants in clinically relevant genes. Here, we describe the first ClinGen variant curation expert panels (VCEPs), development of consistent and streamlined processes for establishing new VCEPs, and creation of standard operating procedures for VCEPs to define application of the ACMG/AMP guidelines for sequence variant interpretation in specific genes or diseases. Additionally, ClinGen has created user interfaces to enhance reliability of curation and a Sequence Variant Interpretation Working Group (SVI WG) to harmonize guideline specifications and ensure consistency between groups. The expansion of VCEPs represents the primary mechanism by which curation of a substantial fraction of genomic variants can be accelerated and ultimately undertaken systematically and comprehensively. We welcome groups to utilize our resources and become involved in our effort to create a publicly accessible, centralized resource for clinically relevant genes and variants.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Biología Computacional , Bases de Datos Genéticas , Genómica , Humanos , Mutación/genética , Sociedades Médicas , Programas Informáticos , Estados Unidos
20.
Hum Mutat ; 39(11): 1650-1659, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30095202

RESUMEN

Conflict resolution in genomic variant interpretation is a critical step toward improving patient care. Evaluating interpretation discrepancies in copy number variants (CNVs) typically involves assessing overlapping genomic content with focus on genes/regions that may be subject to dosage sensitivity (haploinsufficiency (HI) and/or triplosensitivity (TS)). CNVs containing dosage sensitive genes/regions are generally interpreted as "likely pathogenic" (LP) or "pathogenic" (P), and CNVs involving the same known dosage sensitive gene(s) should receive the same clinical interpretation. We compared the Clinical Genome Resource (ClinGen) Dosage Map, a publicly available resource documenting known HI and TS genes/regions, against germline, clinical CNV interpretations within the ClinVar database. We identified 251 CNVs overlapping known dosage sensitive genes/regions but not classified as LP or P; these were sent back to their original submitting laboratories for re-evaluation. Of 246 CNVs re-evaluated, an updated clinical classification was warranted in 157 cases (63.8%); no change was made to the current classification in 79 cases (32.1%); and 10 cases (4.1%) resulted in other types of updates to ClinVar records. This effort will add curated interpretation data into the public domain and allow laboratories to focus attention on more complex discrepancies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Curaduría de Datos , Bases de Datos Genéticas , Variación Genética/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...