Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Appl Physiol (1985) ; 136(5): 1105-1112, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482574

RESUMEN

During spaceflight, fluids shift headward, causing internal jugular vein (IJV) distension and altered hemodynamics, including stasis and retrograde flow, that may increase the risk of thrombosis. This study's purpose was to determine the effects of acute exposure to weightlessness (0-G) on IJV dimensions and flow dynamics. We used two-dimensional (2-D) ultrasound to measure IJV cross-sectional area (CSA) and Doppler ultrasound to characterize venous blood flow patterns in the right and left IJV in 13 healthy participants (6 females) while 1) seated and supine on the ground, 2) supine during 0-G parabolic flight, and 3) supine during level flight (at 1-G). On Earth, in 1-G, moving from seated to supine posture increased CSA in both left (+62 [95% CI: +42 to 81] mm2, P < 0.0001) and right (+86 [95% CI: +58 to 113] mm2, P < 0.00012) IJV. Entry into 0-G further increased IJV CSA in both left (+27 [95% CI: +5 to 48] mm2, P = 0.02) and right (+30 [95% CI: +0.3 to 61] mm2, P = 0.02) relative to supine in 1-G. We observed stagnant flow in the left IJV of one participant during 0-G parabolic flight that remained during level flight but was not present during any imaging during preflight measures in the seated or supine postures; normal venous flow patterns were observed in the right IJV during all conditions in all participants. Alterations to cerebral outflow dynamics in the left IJV can occur during acute exposure to weightlessness and thus, may increase the risk of venous thrombosis during any duration of spaceflight.NEW & NOTEWORTHY The absence of hydrostatic pressure gradients in the vascular system and loss of tissue weight during weightlessness results in altered flow dynamics in the left internal jugular vein in some astronauts that may contribute to an increased risk of thromboembolism during spaceflight. Here, we report that the internal jugular veins distend bilaterally in healthy participants and that flow stasis can occur in the left internal jugular vein during acute weightlessness produced by parabolic flight.


Asunto(s)
Venas Yugulares , Ingravidez , Humanos , Femenino , Venas Yugulares/fisiología , Venas Yugulares/diagnóstico por imagen , Masculino , Adulto , Ingravidez/efectos adversos , Vuelo Espacial/métodos , Hemodinámica/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Posición Supina/fisiología , Adulto Joven
2.
J Appl Physiol (1985) ; 133(3): 721-731, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35861522

RESUMEN

Weightlessness induces a cephalad shift of blood and cerebrospinal fluid that may increase intracranial pressure (ICP) during spaceflight, whereas lower body negative pressure (LBNP) may provide an opportunity to caudally redistribute fluids and lower ICP. To investigate the effects of spaceflight and LBNP on noninvasive indicators of ICP (nICP), we studied 13 crewmembers before and after spaceflight in seated, supine, and 15° head-down tilt postures, and at ∼45 and ∼150 days of spaceflight with and without 25 mmHg LBNP. We used four techniques to quantify nICP: cerebral and cochlear fluid pressure (CCFP), otoacoustic emissions (OAE), ultrasound measures of optic nerve sheath diameter (ONSD), and ultrasound-based internal jugular vein pressure (IJVp). On flight day 45, two nICP measures were lower than preflight supine posture [CCFP: mean difference -98.5 -nL (CI: -190.8 to -6.1 -nL), P = 0.037]; [OAE: -19.7° (CI: -10.4° to -29.1°), P < 0.001], but not significantly different from preflight seated measures. Conversely, ONSD was not different than any preflight posture, whereas IJVp was significantly greater than preflight seated measures [14.3 mmHg (CI: 10.1 to 18.5 mmHg), P < 0.001], but not significantly different than preflight supine measures. During spaceflight, acute LBNP application did not cause a significant change in nICP indicators. These data suggest that during spaceflight, nICP is not elevated above values observed in the seated posture on Earth. Invasive measures would be needed to provide absolute ICP values and more precise indications of ICP change during various phases of spaceflight.NEW & NOTEWORTHY The current study provides new evidence that intracranial pressure (ICP), as assessed with noninvasive measures, may not be elevated during long-duration spaceflight. In addition, the acute use of lower body negative pressure did not significantly reduce indicators of ICP during weightlessness.


Asunto(s)
Vuelo Espacial , Ingravidez , Inclinación de Cabeza/fisiología , Presión Intracraneal/fisiología , Vuelo Espacial/métodos , Simulación de Ingravidez
3.
PLoS One ; 17(5): e0267755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35536776

RESUMEN

Using halo effect as the underlying theory, we examined how perceived quality of medical care influenced components of post-visit destination image (infrastructure, attraction, value for money, and enjoyment) and how each component influenced Bangladeshi outbound medical tourists' revisit intentions. Additionally, we examined how these relationships varied based on their length of stay (LOS) and travel-group size (TGS). Results showed a significant positive effect of the perceived quality of medical care on all four components of the post-visit destination image. Except for enjoyment, all three components had a significant positive influence on revisit intentions. All the proposed relationships were supported for medical tourists with higher LOS and TGS. However, for medical tourists with low LOS, the perceived quality of medical care did not influence value for money. Furthermore, value for money and enjoyment did not significantly influence revisit intentions for medical tourists with low LOS and TGS.


Asunto(s)
Intención , Turismo Médico , Humanos , Tiempo de Internación , Placer , Viaje
4.
J Appl Physiol (1985) ; 130(6): 1766-1777, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33856253

RESUMEN

Head-to-foot gravitationally induced hydrostatic pressure gradients in the upright posture on Earth are absent in weightlessness. This results in a relative headward fluid shift in the vascular and cerebrospinal fluid compartments and may underlie multiple physiological consequences of spaceflight, including the spaceflight-associated neuro-ocular syndrome. Here, we tested three mechanical countermeasures [lower body negative pressure (LBNP), venoconstrictive thigh cuffs (VTC), and impedance threshold device (ITD) resistive inspiratory breathing] individually and in combination to reduce a posture-induced headward fluid shift as a ground-based spaceflight analog. Ten healthy subjects (5 male) underwent baseline measures (seated and supine postures) followed by countermeasure exposure in the supine posture. Noninvasive measurements included ultrasound [internal jugular veins (IJV) cross-sectional area, cardiac stroke volume, optic nerve sheath diameter, noninvasive IJV pressure], transient evoked otoacoustic emissions (OAE; intracranial pressure index), intraocular pressure, choroidal thickness from optical coherence tomography imaging, and brachial blood pressure. Compared with the supine posture, IJV area decreased 48% with application of LBNP [mean ratio: 0.52, 95% confidence interval (CI): 0.44-0.60, P < 0.001], 31% with VTC (mean ratio: 0.69, 95% CI: 0.55-0.87, P < 0.001), and 56% with ITD (mean ratio: 0.44, 95% CI: 0.12-1.70, P = 0.46), measured at end-inspiration. LBNP was the only individual countermeasure to decrease the OAE phase angle (Δ -12.9 degrees, 95% CI: -25 to -0.9, P = 0.027), and use of combined countermeasures did not result in greater effects. Thus, LBNP, and to a lesser extent VTC and ITD, represents promising headward fluid shift countermeasures but will require future testing in analog and spaceflight environments.NEW & NOTEWORTHY As a weightlessness-induced headward fluid shift is hypothesized to be a primary factor underlying several physiological consequences of spaceflight, countermeasures aimed at reversing the fluid shift will likely be crucial during exploration-class spaceflight missions. Here, we tested three mechanical countermeasures individually and in various combinations to reduce a posture-induced headward fluid shift as a ground-based spaceflight analog.


Asunto(s)
Vuelo Espacial , Ingravidez , Transferencias de Fluidos Corporales , Humanos , Presión Intracraneal , Presión Negativa de la Región Corporal Inferior , Masculino , Ingravidez/efectos adversos
5.
iScience ; 24(4): 102344, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870138

RESUMEN

Loss of muscle mass is a major concern for long duration spaceflight. However, due to the need for specialized equipment, muscle size has only been assessed before and after spaceflight where ~20% loss is observed. Here, we demonstrate the utility of teleguided self-ultrasound scanning (Tele-SUS) to accurately monitor leg muscle size in astronauts during spaceflight. Over an average of 168 ± 57 days of spaceflight, 74 Tele-SUS sessions were performed. There were no significant differences between panoramic ultrasound images obtained by astronauts seven days prior to landing and expert sonographer after flight or between change in muscle size assessed by ultrasound and magnetic resonance imaging. These findings extend the current capabilities of ultrasound imaging to allow self-monitoring of muscle size with remote guidance.

6.
Front Physiol ; 11: 863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848835

RESUMEN

Introduction: Chronic exposure to the weightlessness-induced cephalad fluid shift is hypothesized to be a primary contributor to the development of spaceflight-associated neuro-ocular syndrome (SANS) and may be associated with an increased risk of venous thrombosis in the jugular vein. This study characterized the relationship between gravitational level (Gz-level) and acute vascular changes. Methods: Internal jugular vein (IJV) cross-sectional area, inferior vena cava (IVC) diameter, and common carotid artery (CCA) flow were measured using ultrasound in nine subjects (5F, 4M) while seated when exposed to 1.00-Gz, 0.75-Gz, 0.50-Gz, and 0.25-Gz during parabolic flight and while supine before flight (0-G analog). Additionally, IJV flow patterns were characterized. Results: IJV cross-sectional area progressively increased from 12 (95% CI: 9-16) mm2 during 1.00-Gz seated to 24 (13-35), 34 (21-46), 68 (40-97), and 103 (75-131) mm2 during 0.75-Gz, 0.50-Gz, and 0.25-Gz seated and 1.00-Gz supine, respectively. Also, IJV flow pattern shifted from the continuous forward flow observed during 1.00-Gz and 0.75-Gz seated to pulsatile flow during 0.50-Gz seated, 0.25-Gz seated, and 1.00-Gz supine. In contrast, we were unable to detect differences in IVC diameter measured during 1.00-G seated and any level of partial gravity or during 1.00-Gz supine. CCA blood flow during 1.00-G seated was significantly less than 0.75-Gz and 1.00-Gz supine but differences were not detected at partial gravity levels 0.50-Gz and 0.25-Gz. Conclusions: Acute exposure to decreasing Gz-levels is associated with an expansion of the IJV and flow patterns that become similar to those observed in supine subjects and in astronauts during spaceflight. These data suggest that Gz-levels greater than 0.50-Gz may be required to reduce the weightlessness-induced headward fluid shift that may contribute to the risks of SANS and venous thrombosis during spaceflight.

7.
J Appl Physiol (1985) ; 129(1): 108-123, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32525433

RESUMEN

Spaceflight missions expose astronauts to increased risk of oxidative stress and inflammatory damage that might accelerate the development of asymptomatic cardiovascular disease. The purpose of this investigation was to determine whether long-duration spaceflight (>4 mo) results in structural and functional changes in the carotid and brachial arteries. Common carotid artery (CCA) intima-media thickness (cIMT), CCA distensibility and stiffness, and brachial artery endothelium-dependent and -independent vasodilation were measured in 13 astronauts (10 men, 3 women) ~180 and 60 days before launch, during the mission on ~15, 60, and 160 days of spaceflight, and within 1 wk after landing. Biomarkers of oxidative stress and inflammation were measured at corresponding times in fasting blood samples and urine samples from 24- or 48-h pools. Biomarkers of oxidative stress and inflammation increased during spaceflight, but most returned to preflight levels within 1 wk of landing. Mean cIMT, CCA stiffness, and distensibility were not significantly different from preflight at any time. As a group, neither mean endothelium-dependent nor -independent vasodilation changed from preflight to postflight, but changes within individuals in endothelial function related to some biomarkers of oxidative stress. Whereas biomarkers of oxidative stress and inflammation are elevated during spaceflight, CCA and brachial artery structure and function were not changed by spaceflight. It is unclear whether future exploration missions, with an extended duration in altered gravity fields and higher radiation exposure, may be problematic.NEW & NOTEWORTHY Carotid artery structure and stiffness did not change on average in astronauts during long-duration spaceflight (<12 mo), despite increased oxidative stress and inflammation. Most oxidative stress and inflammation biomarkers returned to preflight levels soon after landing. Brachial artery structure and function also were unchanged by spaceflight. In this group of healthy middle-aged male and female astronauts, spaceflight in low Earth orbit does not appear to increase long-term cardiovascular health risk.


Asunto(s)
Grosor Intima-Media Carotídeo , Vuelo Espacial , Astronautas , Arteria Carótida Común/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
8.
JAMA Netw Open ; 2(11): e1915011, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31722025

RESUMEN

Importance: Exposure to a weightless environment during spaceflight results in a chronic headward blood and tissue fluid shift compared with the upright posture on Earth, with unknown consequences to cerebral venous outflow. Objectives: To assess internal jugular vein (IJV) flow and morphology during spaceflight and to investigate if lower body negative pressure is associated with reversing the headward fluid shift experienced during spaceflight. Design, Setting, and Participants: This prospective cohort study included 11 International Space Station crew members participating in long-duration spaceflight missions . Internal jugular vein measurements from before launch and approximately 40 days after landing were acquired in 3 positions: seated, supine, and 15° head-down tilt. In-flight IJV measurements were acquired at approximately 50 days and 150 days into spaceflight during normal spaceflight conditions as well as during use of lower body negative pressure. Data were analyzed in June 2019. Exposures: Posture changes on Earth, spaceflight, and lower body negative pressure. Main Outcomes and Measures: Ultrasonographic assessments of IJV cross-sectional area, pressure, blood flow, and thrombus formation. Results: The 11 healthy crew members included in the study (mean [SD] age, 46.9 [6.3] years, 9 [82%] men) spent a mean (SD) of 210 (76) days in space. Mean IJV area increased from 9.8 (95% CI, -1.2 to 20.7) mm2 in the preflight seated position to 70.3 (95% CI, 59.3-81.2) mm2 during spaceflight (P < .001). Mean IJV pressure increased from the preflight seated position measurement of 5.1 (95% CI, 2.5-7.8) mm Hg to 21.1 (95% CI, 18.5-23.7) mm Hg during spaceflight (P < .001). Furthermore, stagnant or reverse flow in the IJV was observed in 6 crew members (55%) on approximate flight day 50. Notably, 1 crew member was found to have an occlusive IJV thrombus, and a potential partial IJV thrombus was identified in another crew member retrospectively. Lower body negative pressure was associated with improved blood flow in 10 of 17 sessions (59%) during spaceflight. Conclusions and Relevance: This cohort study found stagnant and retrograde blood flow associated with spaceflight in the IJVs of astronauts and IJV thrombosis in at least 1 astronaut, a newly discovered risk associated with spaceflight. Lower body negative pressure may be a promising countermeasure to enhance venous blood flow in the upper body during spaceflight.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Venas Yugulares/fisiología , Trombosis/diagnóstico por imagen , Ingravidez/efectos adversos , Adulto , Medicina Aeroespacial/métodos , Astronautas/estadística & datos numéricos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Vuelo Espacial/métodos , Vuelo Espacial/tendencias , Trombosis/prevención & control , Ultrasonografía/métodos
9.
J Clin Aesthet Dermatol ; 12(8): 51-54, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31531173

RESUMEN

A 25-year-old man seeking increased prominence of the cheeks self-injected a topical skin preparation containing hyaluronic acid into his malar soft tissues. Labeling and marketing of the product, which highlighted the hyaluronic acid as one of the ingredients, might have contributed to his misunderstanding of the intended use for the product. Additionally, a popular medical-based talk show and numerous videos online contributed to the errant belief that self-administration was a viable option. Complications from the injection of nonpharmaceutical substances of this type and implications for treatment in clinical practice are discussed.

10.
Analyst ; 143(24): 5912-5917, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30191233

RESUMEN

This work reports the first images obtained by combining an infrared aperture scanning near-field optical microscope (SNOM) with a quantum cascade laser (QCL). The future potential of this set-up is demonstrated by a preliminary study on an OE33 human oesophageal adenocarcinoma cell in which the cell is imaged at 1751 cm-1, 1651 cm-1, 1539 cm-1 and 1242 cm-1. In addition to the 1651 cm-1 image, three other images were acquired within the Amide I band (1689 cm-1, 1675 cm-1 and 1626 cm-1) chosen to correspond to secondary structures of proteins. The four images obtained within the Amide I band show distinct differences demonstrating the potential of this approach to reveal subtle changes in the chemical composition of a cell.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Células Epiteliales/patología , Láseres de Semiconductores , Microscopía/instrumentación , Microscopía/métodos , Adenocarcinoma/patología , Línea Celular Tumoral , Humanos
11.
Front Public Health ; 6: 177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30035105

RESUMEN

While social and behavioral effects of violence in the media have been studied extensively, much less is known about how sports affect perceptions of violence. The current study examined neurofunctional differences between fans and non-fans of North American football (a contact sport) while viewing violent imagery. Participants viewed images of violence in both football and non-football settings while high-resolution functional magnetic resonance imaging (fMRI) data were acquired from their brains. Neurological activation was compared between these violence types and between groups. Fans of football show diminished activation in brain regions involved in pain perception and empathy such as the anterior cingulate cortex, fusiform gyrus, insula, and temporal pole when viewing violence in the context of football compared to more broadly violent images. Non-fans of football showed no such effect for the types of violent imagery and had higher activation levels than fans of football for the specified brain regions. These differences show that fans of football may perceive violence differently when it is in the context of football. These fan attitudes have potential policy implications for addressing the issue of concussions in North American football.

13.
J Am Soc Echocardiogr ; 30(12): 1180-1188, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29056408

RESUMEN

BACKGROUND: Gravity affects every aspect of cardiac performance. When gravitational gradients are at their greatest on Earth (i.e., during upright posture), orthostatic intolerance may ensue and is a common clinical problem that appears to be exacerbated by the adaptation to spaceflight. We sought to elucidate the alterations in cardiac performance during preload reduction with progressive upright tilt that are relevant both for space exploration and the upright posture, particularly the preload dependence of various parameters of cardiovascular performance. METHODS: This was a prospective observational study with tilt-induced hydrostatic stress. Echocardiographic images were recorded at four different tilt angles in 13 astronauts, to mimic varying degrees of gravitational stress: 0° (supine, simulating microgravity of space), 22° head-up tilt (0.38 G, simulating Martian gravity), 41° (0.66 G, simulating approximate G load of a planetary lander), and 80° (1 G, effectively full Earth gravity). These images were then analyzed offline to assess the effects of preload reduction on anatomical and functional parameters. RESULTS: Although three-dimensional end-diastolic, end-systolic, and stroke volumes were significantly reduced during tilting, ejection fractions showed no significant change. Mitral annular e' and a' velocities were reduced with increasing gravitational load (P < .001 and P = .001), although s' was not altered. Global longitudinal strain (GLS; from -19.8% ± 2.2% to -14.7% ± 1.5%) and global circumferential strain (GCS; from -29.2% ± 2.5% to -26.0% ± 1.8%) were reduced significantly with increasing gravitational stress (both P < .001), while the change in strain rates were less certain: GLSR (P = .049); GCSR (P = .55). End-systolic elastance was not consistently changed (P = .53), while markers of cardiac afterload rose significantly (effective arterial elastance, P < .001; systemic vascular resistance, P < .001). CONCLUSIONS: Preload modification with gravitational loading alters most hemodynamic and echocardiographic parameters including e' velocity, GLS, and GCS. However, end-systolic elastance and strain rate appear to be more load-independent measures to examine alterations in the cardiovascular function during postural and preload changes, including microgravity.


Asunto(s)
Ecocardiografía Tridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Postura/fisiología , Vuelo Espacial , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología , Función Ventricular Izquierda/fisiología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
14.
Sci Data ; 4: 170084, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28696426

RESUMEN

Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.


Asunto(s)
Núcleo Celular , Cuello del Útero/citología , Cuello del Útero/diagnóstico por imagen , Femenino , Humanos , Rayos Láser , Microscopía , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Cachexia Sarcopenia Muscle ; 8(3): 475-481, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28052593

RESUMEN

BACKGROUND: The strong link between reduced muscle mass and morbidity and mortality highlights the urgent need for simple techniques that can monitor change in skeletal muscle cross-sectional area (CSA). Our objective was to examine the validity of panoramic ultrasound to detect change in quadriceps and gastrocnemius size in comparison with magnetic resonance imaging (MRI) in subjects randomized to 70 days of bed rest (BR) with or without exercise. METHODS: Panoramic ultrasound and MRI images of the quadriceps and gastrocnemius muscles were acquired on the right leg of 27 subjects (26 male, 1 female; age: 34.6 ± 7.8 years; body mass: 77.5 ± 10.0 kg; body mass index: 24.2 ± 2.8 kg/m2 ; height: 179.1 ± 6.9 cm) before (BR-6), during (BR3, 7, 11, 15, 22, 29, 36, 53, 69), and after (BR+3, +6, +10) BR. Validity of panoramic ultrasound to detect change in muscle CSA was assessed by Bland-Altman plots, Lin's concordance correlation coefficient (CCC), sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: Six hundred ninety-eight panoramic ultrasound CSA and 698 MRI CSA measurements were assessed. Concordance between ultrasound and MRI was excellent in the quadriceps (CCC: 0.78; P < 0.0001), whereas there was poor concordance in the gastrocnemius (CCC: 0.37; P < 0.0006). Compared with MRI, panoramic ultrasound demonstrated high accuracy in detecting quadriceps atrophy and hypertrophy (sensitivity: 73.7%; specificity: 74.2%) and gastrocnemius atrophy (sensitivity: 83.1%) and low accuracy in detecting gastrocnemius hypertrophy (specificity: 33.0%). CONCLUSIONS: Panoramic ultrasound imaging is a valid tool for monitoring quadriceps muscle atrophy and hypertrophy and for detecting gastrocnemius atrophy.


Asunto(s)
Músculo Esquelético/diagnóstico por imagen , Ultrasonografía , Adulto , Femenino , Humanos , Hipertrofia , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/patología , Tamaño de los Órganos , Músculo Cuádriceps/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
16.
Sci Rep ; 6: 29494, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27406404

RESUMEN

Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 µm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 µm to 30 µm due to the optical diffraction limit.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Microscopía/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Adenocarcinoma/patología , Adolescente , Adulto , Algoritmos , Biomarcadores/metabolismo , Proliferación Celular , Estudios de Cohortes , Simulación por Computador , ADN/química , Electrones , Femenino , Humanos , Lípidos/química , Microscopía de Fuerza Atómica , Persona de Mediana Edad , Modelos Estadísticos , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias del Cuello Uterino/patología , Adulto Joven , Displasia del Cuello del Útero/diagnóstico por imagen , Displasia del Cuello del Útero/patología
17.
Physiol Rep ; 4(24)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28039409

RESUMEN

One hypothesized contributor to vision changes experienced by >75% of International Space Station astronauts is elevated intracranial pressure (ICP). While no definitive data yet exist, elevated ICP might be secondary to the microgravity-induced cephalad fluid shift, resulting in venous congestion (overfilling and distension) and inhibition of cerebrospinal and lymphatic fluid drainage from the skull. The objective of this study was to measure internal jugular venous pressure (IJVP) during normo- and hypo-gravity as an index of venous congestion. IJVP was measured noninvasively using compression sonography at rest during end-expiration in 11 normal, healthy subjects (3 M, 8 F) during normal gravity (1G; supine) and weightlessness (0G; seated) produced by parabolic flight. IJVP also was measured in two subjects during parabolas approximating Lunar (1/6G) and Martian gravity (1/3G). Finally, IJVP was measured during increased intrathoracic pressure produced using controlled Valsalva maneuvers. IJVP was higher in 0G than 1G (23.9 ± 5.6 vs. 9.9 ± 5.1 mmHg, mean ± SD P < 0.001) in all subjects, and IJVP increased as gravity levels decreased in two subjects. Finally, IJVP was greater in 0G than 1G at all expiration pressures (P < 0.01). Taken together, these data suggest that IJVP is elevated during acute exposure to reduced gravity and may be elevated further by conditions that increase intrathoracic pressure, a strong modulator of central venous pressure and IJVP However, whether elevated IJVP, and perhaps consequent venous congestion, observed during acute microgravity exposure contribute to vision changes during long-duration spaceflight is yet to be determined.


Asunto(s)
Venas Yugulares/fisiología , Vuelo Espacial , Simulación de Ingravidez , Adulto , Femenino , Gravitación , Humanos , Hipogravedad , Masculino , Persona de Mediana Edad , Respiración , Presión Venosa
18.
J Appl Physiol (1985) ; 120(8): 956-64, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26494448

RESUMEN

Short periods of weightlessness are associated with reduced stroke volume and left ventricular (LV) mass that appear rapidly and are thought to be largely dependent on plasma volume. The magnitude of these cardiac adaptations are even greater after prolonged periods of simulated weightlessness, but the time course during and the recovery from bed rest has not been previously described. We collected serial measures of plasma volume (PV, carbon monoxide rebreathing) and LV structure and function [tissue Doppler imaging, three-dimensional (3-D) and 2-D echocardiography] before, during, and up to 2 wk after 60 days of 6° head down tilt bed rest (HDTBR) in seven healthy subjects (four men, three women). By 60 days of HDTBR, PV was markedly reduced (2.7 ± 0.3 vs. 2.3 ± 0.3 liters,P< 0.001). Resting measures of LV volume and mass were ∼15% (P< 0.001) and ∼14% lower (P< 0.001), respectively, compared with pre-HDTBR values. After 3 days of reambulation, both PV and LV volumes were not different than pre-HDTBR values. However, LV mass did not recover with normalization of PV and remained 12 ± 4% lower than pre-bed rest values (P< 0.001). As previously reported, decreased PV and LV volume precede and likely contribute to cardiac atrophy during prolonged LV unloading. Although PV and LV volume recover rapidly after HDTBR, there is no concomitant normalization of LV mass. These results demonstrate that reduced LV mass in response to prolonged simulated weightlessness is not a simple effect of tissue dehydration, but rather true LV muscle atrophy that persists well into recovery.


Asunto(s)
Reposo en Cama , Inclinación de Cabeza/fisiología , Ventrículos Cardíacos/fisiopatología , Descanso/fisiología , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/fisiología , Ecocardiografía/métodos , Ecocardiografía Doppler/métodos , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Volumen Plasmático/fisiología , Volumen Sistólico/fisiología , Ingravidez , Simulación de Ingravidez/métodos
19.
Health Mark Q ; 32(2): 165-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075544

RESUMEN

This study introduces the theory of planned behavior to health care marketers by extending and replicating a prior study that predicted student's intention to engage in medical tourism. Based on a sample of 164 usable survey responses, our findings suggested that the MEDTOUR scale (developed and introduced a prior study) is robust and works reasonably well with a national sample. Based on these findings, MEDTOUR appears to be worthy of further consideration by health marketing scholars.


Asunto(s)
Conductas Relacionadas con la Salud , Intención , Turismo Médico/psicología , Actitud Frente a la Salud , Femenino , Humanos , Seguro de Salud/economía , Turismo Médico/economía , Teoría Psicológica , Encuestas y Cuestionarios
20.
Aviat Space Environ Med ; 85(7): 730-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25022161

RESUMEN

Since its initial introduction into the bedside assessment of the trauma patient via the Focused Assessment with Sonography for Trauma (FAST) exam, the use of point-of-care ultrasound has expanded rapidly. A growing body of literature demonstrates ultrasound can be used by nonradiologists as an extension of the physical exam to accurately diagnose or exclude a variety of conditions. These conditions include, but are not limited to, hemoperitoneum, pneumothorax, pulmonary edema, long-bone fracture, deep vein thrombosis, and elevated intracranial pressure. As ultrasound machines have become more compact and portable, their use has extended outside of hospitals to places where the physical exam and diagnostic capabilities may be limited, including the aviation environment. A number of studies using focused sonography have been performed to meet the diagnostic challenges of space medicine. The following article reviews the available literature on portable ultrasound use in aerospace medicine and highlights both known and potential applications of point-of-care ultrasound for the aeromedical clinician.


Asunto(s)
Medicina Aeroespacial , Sistemas de Atención de Punto , Ultrasonografía/instrumentación , Huesos/diagnóstico por imagen , Competencia Clínica , Ecocardiografía , Ojo/diagnóstico por imagen , Femenino , Fracturas Óseas/diagnóstico por imagen , Hemotórax/diagnóstico por imagen , Humanos , Intubación Intratraqueal/instrumentación , Intubación Intratraqueal/métodos , Derrame Pleural/diagnóstico por imagen , Embarazo , Embarazo Ectópico/diagnóstico por imagen , Edema Pulmonar/diagnóstico por imagen , Ultrasonografía Prenatal , Sistema Urinario/diagnóstico por imagen , Heridas y Lesiones/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...