Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714653

RESUMEN

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

2.
Nat Mater ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783106

RESUMEN

Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems.

3.
Nat Commun ; 15(1): 2903, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575570

RESUMEN

Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.

4.
Nat Mater ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622325

RESUMEN

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

5.
Nano Lett ; 24(10): 2972-2979, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416567

RESUMEN

The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures.

6.
Nat Mater ; 23(1): 9-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172547
7.
Nat Commun ; 15(1): 479, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212317

RESUMEN

Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3 thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3 at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3 electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3 (001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3 typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.

8.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016700

RESUMEN

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

10.
Adv Mater ; 35(51): e2302012, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37433562

RESUMEN

Complex-oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit-cell-precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor-like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3 )n /(SrTiO3 )n (n = 4-20 unit cells) superlattices. Dielectric studies and subsequent Vogel-Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller period n. Bond-valence molecular-dynamics simulations predict the relaxor-like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete-wavelet transforms in shorter-period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer-period superlattices (n = 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor-like behavior which may expand the ability to control desired properties in these complex systems.

11.
Nano Lett ; 23(14): 6602-6609, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449842

RESUMEN

Nontrivial polarization textures have been demonstrated in ferroelectric/dielectric superlattices, where the electrostatic, elastic, and different gradient energies compete in a delicate balance. When PbTiO3/SrTiO3 superlattices are grown on DyScO3, the coexistence of ferroelectric domains and vortex structure is observed for n = 12-20 unit cells. Here, we report an approach to achieve single-phase vortex structures in superlattices by controlling the epitaxial strain using Sr1.04Al0.12Ga0.35Ta0.50O3 substrates. The domain width follows Kittel's law with the thickness of the ferroelectric PbTiO3 layers. A phase transition from vortex to a disordered phase with temperature is characterized by the correlation length. Resonant soft X-ray diffraction circular dichroism at the titanium L-edge reveals enhanced chirality with the thickness of the ferroelectric layer. These results are supported by second-principles simulations, which demonstrate that the integrated helicity increases with n. The stabilization of chiral single-phase polar vortices in ferroelectric/dielectric superlattices can enable novel optoelectronic devices with enhanced ferroelectric-light interaction.

12.
Phys Rev Lett ; 130(26): 266801, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450818

RESUMEN

[BaTiO_{3}]_{m}/[BaZrO_{3}]_{n} (m, n=4-12) superlattices are used to demonstrate the fabrication and deterministic control of an artificial relaxor. X-ray diffraction and atomic-resolution imaging studies confirm the production of high-quality heterostructures. With decreasing BaTiO_{3} layer thickness, dielectric measurements reveal systematically lower dielectric-maximum temperatures, while hysteresis loops and third-harmonic nonlinearity studies suggest a transition from ferroelectriclike to relaxorlike behavior driven by tuning the random-field strength. This system provides a novel platform for studying the size effect and interaction length scale of the nanoscale-polar structures in relaxors.


Asunto(s)
Compuestos de Bario , Temperatura
13.
Phys Rev Lett ; 130(22): 226801, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327425

RESUMEN

Polar skyrmions are topologically stable, swirling polarization textures with particlelike characteristics, which hold promise for next-generation, nanoscale logic and memory. However, the understanding of how to create ordered polar skyrmion lattice structures and how such structures respond to applied electric fields, temperature, and film thickness remains elusive. Here, using phase-field simulations, the evolution of polar topology and the emergence of a phase transition to a hexagonal close-packed skyrmion lattice is explored through the construction of a temperature-electric field phase diagram for ultrathin ferroelectric PbTiO_{3} films. The hexagonal-lattice skyrmion crystal can be stabilized under application of an external, out-of-plane electric field which carefully adjusts the delicate interplay of elastic, electrostatic, and gradient energies. In addition, the lattice constants of the polar skyrmion crystals are found to increase with film thickness, consistent with expectation from Kittel's law. Our studies pave the way for the development of novel ordered condensed matter phases assembled from topological polar textures and related emergent properties in nanoscale ferroelectrics.


Asunto(s)
Electricidad , Transición de Fase , Electricidad Estática , Temperatura
14.
Adv Mater ; 35(39): e2301934, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37294272

RESUMEN

Interlayer coupling in materials, such as exchange interactions at the interface between an antiferromagnet and a ferromagnet, can produce exotic phenomena not present in the parent materials. While such interfacial coupling in magnetic systems is widely studied, there is considerably less work on analogous electric counterparts (i.e., akin to electric "exchange-bias-like" or "exchange-spring-like" interactions between two polar materials) despite the likelihood that such effects can also engender new features associated with anisotropic electric dipole alignment. Here, electric analogs of such exchange interactions are reported, and their physical origins are explained for bilayers of in-plane polarized Pb1-x Srx TiO3 ferroelectrics. Variation of the strontium content and thickness of the layers provides for deterministic control over the switching properties of the bilayer system resulting in phenomena analogous to an exchange-spring interaction and, leveraging added control of these interactions with an electric field, the ability to realize multistate-memory function. Such observations not only hold technological promise for ferroelectrics and multiferroics but also extend the similarities between ferromagnetic and ferroelectric materials to include the manifestation of exchange-interaction-like phenomena.

15.
Nat Commun ; 14(1): 2418, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105973

RESUMEN

The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and processing strategies to produce highly responsive piezoelectric microtransducers that operate at ultrasonic frequencies. The 3D printed dense piezoelectric elements achieve high piezoelectric coefficients and complex architectures. The resulting piezoelectric charge constant, d33, and coupling factor, kt, of the 3D printed piezoceramic reach 583 pC/N and 0.57, approaching the properties of pristine ceramics. The integrated printing of transducer packaging materials and 3D printed piezoceramics with microarchitectures create opportunities for miniaturized piezoelectric ultrasound transducers capable of acoustic focusing and localized cavitation within millimeter-sized channels, leading to miniaturized ultrasonic devices that enable a wide range of biomedical applications.

16.
Adv Mater ; 35(23): e2208367, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36930962

RESUMEN

Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor-based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric-ferroelectric-dielectric trilayers exhibit classical ferroelectric bi-stability together with the existence of low-field metastable polarization states. This behavior is directly tied to the in-plane vortex ordering, and it is shown that it can be used as a new method of non-destructive readout-out of the poled state.

17.
Nat Commun ; 14(1): 1355, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907894

RESUMEN

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of -1) to a two-dimensional, tetratic lattice of merons (with topological charge of -1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8 membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

18.
Adv Mater ; 35(24): e2300257, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919926

RESUMEN

Antiferroelectrics, which undergo a field-induced phase transition to ferroelectric order that manifests as double-hysteresis polarization switching, exhibit great potential for dielectric, electromechanical, and electrothermal applications. Compared to their ferroelectric cousins, however, considerably fewer efforts have been made to understand and control antiferroelectrics. Here, it is demonstrated that the polarization switching behavior of an antiferroelectric can be strongly influenced and effectively regulated by point defects. In films of the canonical antiferroelectric PbZrO3 , decreasing oxygen pressure during deposition (and thus increasing adatom kinetic energy) causes unexpected "ferroelectric-like" polarization switching although the films remain in the expected antiferroelectric orthorhombic phase. This "ferroelectric-like" switching is correlated with the creation of bombardment-induced point-defect complexes which pin the antiferroelectric-ferroelectric phase boundaries, and thus effectively delay the phase transition under changing field. The effective pinning energy is extracted via temperature-dependent switching-kinetics studies. In turn, by controlling the concentration of defect complexes, the dielectric tunability of the PbZrO3 can be adjusted, including being able to convert between "positive" and "negative" tunability near zero field. This work reveals the important role and strong capability of defects to engineer antiferroelectrics for new performance and functionalities.

19.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739113

RESUMEN

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

20.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36536139

RESUMEN

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...