Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Ambio ; 52(5): 918-937, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36952094

RESUMEN

Environmental mercury (Hg) contamination is a global concern requiring action at national scales. Scientific understanding and regulatory policies are underpinned by global extrapolation of Northern Hemisphere Hg data, despite historical, political, and socioeconomic differences between the hemispheres that impact Hg sources and sinks. In this paper, we explore the primary anthropogenic perturbations to Hg emission and mobilization processes that differ between hemispheres and synthesize current understanding of the implications for Hg cycling. In the Southern Hemisphere (SH), lower historical production of Hg and other metals implies lower present-day legacy emissions, but the extent of the difference remains uncertain. More use of fire and higher deforestation rates drive re-mobilization of terrestrial Hg, while also removing vegetation that would otherwise provide a sink for atmospheric Hg. Prevalent Hg use in artisanal and small-scale gold mining is a dominant source of Hg inputs to the environment in tropical regions. Meanwhile, coal-fired power stations continue to be a significant Hg emission source and industrial production of non-ferrous metals is a large and growing contributor. Major uncertainties remain, hindering scientific understanding and effective policy formulation, and we argue for an urgent need to prioritize research activities in under-sampled regions of the SH.


Asunto(s)
Mercurio , Mercurio/análisis , Minería , Monitoreo del Ambiente , Oro
2.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771779

RESUMEN

Mercury is a well-known heavy metal pollutant of global importance, typically found in effluents (lakes, oceans, and sewage) and released into the atmosphere. It is highly toxic to humans, animals and plants. Therefore, the current challenge is to develop efficient materials and techniques that can be used to remediate mercury pollution in water and the atmosphere, even in low concentrations. The paper aims to review the chitosan-based polymer nanocomposite materials that have been used for the environmental remediation of mercury pollution since they possess multifunctional properties, beneficial for the adsorption of various kinds of pollutants from wastewater and the atmosphere. In addition, these chitosan-based polymer nanocomposites are made of non-toxic materials that are environmentally friendly, highly porous, biocompatible, biodegradable, and recyclable; they have a high number of surface active sites, are earth-abundant, have minimal surface defects, and are metal-free. Advances in the modification of the chitosan, mainly with nanomaterials such as multi-walled carbon nanotube and nanoparticles (Ag, TiO2, S, and ZnO), and its use for mercury uptake by batch adsorption and passive sampler methods are discussed.

3.
Front Microbiol ; 10: 243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967843

RESUMEN

The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, -omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality.

4.
Atmos Chem Phys ; 16(18): 11915-11935, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30245704

RESUMEN

Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...