Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(44): 17061-17075, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37871005

RESUMEN

Nitrogen and phosphorus pollution is of great concern to aquatic life and human well-being. While most of these nutrients are applied to the landscape, little is known about the complex interplay among nutrient applications, transport attenuation processes, and coastal loads. Here, we enhance and apply the Spatially Explicit Nutrient Source Estimate and Flux model (SENSEflux) to simulate the total annual nitrogen and phosphorus loads from the US Great Lakes Basin to the coastline, identify nutrient delivery hotspots, and estimate the relative contributions of different sources and pathways at a high resolution (120 m). In addition to in-stream uptake, the main novelty of this model is that SENSEflux explicitly describes nutrient attenuation through four distinct pathways that are seldom described jointly in other models: runoff from tile-drained agricultural fields, overland runoff, groundwater flow, and septic plumes within groundwater. Our analysis shows that agricultural sources are dominant for both total nitrogen (TN) (58%) and total phosphorus (TP) (46%) deliveries to the Great Lakes. In addition, this study reveals that the surface pathways (sum of overland flow and tile field drainage) dominate nutrient delivery, transporting 66% of the TN and 76% of the TP loads to the US Great Lakes coastline. Importantly, this study provides the first basin-wide estimates of both nonseptic groundwater (TN: 26%; TP: 5%) and septic-plume groundwater (TN: 4%; TP: 2%) deliveries of nutrients to the lakes. This work provides valuable information for environmental managers to target efforts to reduce nutrient loads to the Great Lakes, which could be transferred to other regions worldwide that are facing similar nutrient management challenges.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Humanos , Fósforo/análisis , Nutrientes , Nitrógeno/análisis , Lagos , China
2.
Microbiol Spectr ; 10(4): e0041522, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35730960

RESUMEN

Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gastrointestinal infection risks. Water chemistry data collected during three hydroclimatic seasons from 64 Michigan watersheds were analyzed using seasonal linear regression models with candidate variables including crop and land use proportions, prior precipitation, chemical parameters, and variables related to both wastewater treatment and septic usage. Adaptive least absolute shrinkage and selection operator (LASSO) linear regression with bootstrapping was used to select explanatory variables and estimate coefficients. Regardless of season, wastewater treatment plant and septic system usage were consistently selected in all primary models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related variable selection depended upon season and organism. These results suggest a link between human pollution (e.g., septic systems) and microbial water quality that is dependent on flow regime. IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain insights into fecal contamination sources, drivers, and chemical correlates across seasons for general E. coli and human-specific fecal indicators. Results reaffirmed a link between human-specific sources (e.g., septic systems) and microbial water quality. While the importance of human sources of fecal contamination and fate and transport variables (e.g., precipitation) remain important across seasons, this study provides evidence that fate and transport mechanisms vary with seasonal hydrologic condition and microorganism source. This study contributes to a body of research that informs prioritization of fecal contamination source control and surveillance strategy development to reduce the public health burden of surface water fecal contamination.


Asunto(s)
Escherichia coli , Microbiología del Agua , Monitoreo del Ambiente/métodos , Heces/microbiología , Humanos , Michigan , Estaciones del Año
3.
Water Res ; 219: 118526, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598465

RESUMEN

As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and co-occuring variables (e.g., nutrients, sediment runoff) MST can provide a basis for understanding how to effectively remediate water quality. To determine spatial and temporal trends in microbial contamination and correlations between MST and nutrients, water samples (n = 136) were collected between April 2017 and May of 2018 during eight sampling events from 17 sites in 5 mixed-use watersheds. These samples were analyzed for three MST markers (human - B. theta; bovine - CowM2; porcine - Pig2Bac) along with E. coli, nutrients (nitrogen and phosphorus species), and physiochemical paramaters. These water quality variables were then paired with data on land use, streamflow, precipitation and management practices (e.g., tile drainage, septic tank density, tillage practices) to determine if any significant relationships existed between the observed microbial contamination and these variables. The porcine marker was the only marker that was highly correlated (p value <0.05) with nitrogen and phosphorus species in multiple clustering schemes. Significant relationships were also identified between MST markers and variables that demonstrated temporal trends driven by precipitation and spatial trends driven by septic tanks and management practices (tillage and drainage) when spatial clustering was employed.


Asunto(s)
Microbiología del Agua , Calidad del Agua , Animales , Bovinos , Monitoreo del Ambiente , Escherichia coli , Heces , Nitrógeno , Nutrientes , Fósforo , Porcinos , Contaminación del Agua/análisis
4.
J Environ Qual ; 47(5): 1024-1032, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30272781

RESUMEN

The effects of manure application in agriculture on surface water quality has become a local to global problem because of the adverse consequences on public health and food security. This study evaluated (i) the spatial distribution of bovine (cow) and porcine (pig) genetic fecal markers, (ii) how hydrologic factors influenced these genetic markers, and (iii) their variations as a function of land use, nutrients, and other physiochemical factors. We collected 189 samples from 63 watersheds in Michigan's Lower Peninsula during baseflow, spring melt, and summer rain conditions. For each sample, we quantified the concentrations of bovine and porcine genetic markers by digital droplet polymerase chain reaction and measured , dissolved oxygen, pH, temperature, total phosphorus, total nitrogen, nitrate-nitrite (NO), ammonia (NH), soluble reactive phosphorus, streamflow, and watershed specific precipitation. Bovine and porcine manure markers were ubiquitous in rivers that drain agricultural and natural fields across the study region. This study provides baseline conditions on the state of watershed impairment, which can be used to develop best management practices that could improve water quality. Similar studies should be performed with higher spatial sampling density to elucidate detailed factors that influence the transport of manure constituents.


Asunto(s)
Hidrología , Nutrientes , Agricultura , Animales , Bovinos , Monitoreo del Ambiente , Femenino , Nitrógeno , Fósforo , Ríos , Porcinos , Calidad del Agua
5.
Sci Total Environ ; 579: 1794-1803, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932215

RESUMEN

Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry. We tested two main concepts about mechanisms linking LULC and lake water chemistry: groundwater pathways are an important mechanism driving legacy effects; and, LULC over multiple spatial scales is more closely related to lake chemistry than LULC over a single spatial scale. We applied statistical models to twelve water chemistry variables, ranging from nutrients to relatively conservative ions, to better understand the roles of biogeochemical reactivity and solubility on connections between LULC and aquatic ecosystem response. Our study illustrates how different areas can have long groundwater pathways that represent different LULC than what can be seen on the landscape today. These groundwater pathways delay the arrival of nutrients and other water quality constituents, thus creating a legacy of historic land uses that eventually reaches surface water. We find that: 1) several water chemistry variables are best fit by legacy LULC while others have a stronger link to current LULC, and 2) single spatial scales of LULC analysis performed worse for most variables. Our novel combination of temporal and spatial scales was the best overall model fit for most variables, including SRP where this model explained 54% of the variation. We show that it is important to explicitly account for temporal and spatial context when linking LULC to ecosystem response.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación del Agua/estadística & datos numéricos , Conservación de los Recursos Naturales/métodos , Contaminación del Agua/análisis
6.
Proc Natl Acad Sci U S A ; 112(33): 10419-24, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240328

RESUMEN

Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan's Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL(-1)). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems.


Asunto(s)
Heces/microbiología , Microbiología del Agua , Contaminantes del Agua/análisis , Agua/análisis , Bacteroides/aislamiento & purificación , Monitoreo del Ambiente/métodos , Escherichia coli/aislamiento & purificación , Geología , Concentración de Iones de Hidrógeno , Michigan , Aguas Residuales
7.
Environ Manage ; 48(5): 957-74, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21858711

RESUMEN

A classification system is often used to reduce the number of different ecosystem types that governmental agencies are charged with monitoring and managing. We compare the ability of several different hydrogeomorphic (HGM)-based classifications to group lakes for water chemistry/clarity. We ask: (1) Which approach to lake classification is most successful at classifying lakes for similar water chemistry/clarity? (2) Which HGM features are most strongly related to the lake classes? and, (3) Can a single classification successfully classify lakes for all of the water chemistry/clarity variables examined? We use univariate and multivariate classification and regression tree (CART and MvCART) analysis of HGM features to classify alkalinity, water color, Secchi, total nitrogen, total phosphorus, and chlorophyll a from 151 minimally disturbed lakes in Michigan USA. We developed two MvCART models overall and two CART models for each water chemistry/clarity variable, in each case comparing: local HGM characteristics alone and local HGM characteristics combined with regionalizations and landscape position. The combined CART models had the highest strength of evidence (ω(i) range 0.92-1.00) and maximized within class homogeneity (ICC range 36-66%) for all water chemistry/clarity variables except water color and chlorophyll a. Because the most successful single classification was on average 20% less successful in classifying other water chemistry/clarity variables, we found that no single classification captures variability for all lake responses tested. Therefore, we suggest that the most successful classification (1) is specific to individual response variables, and (2) incorporates information from multiple spatial scales (regionalization and local HGM variables).


Asunto(s)
Fenómenos Ecológicos y Ambientales , Monitoreo del Ambiente , Lagos/análisis , Abastecimiento de Agua/análisis , Clorofila/metabolismo , Clorofila A , Concentración de Iones de Hidrógeno , Modelos Estadísticos , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis , Calidad del Agua , Abastecimiento de Agua/normas
8.
Environ Manage ; 41(3): 425-40, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18080795

RESUMEN

Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce , Ecosistema , Modelos Lineales , Michigan
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...