Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 21(4)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959877

RESUMEN

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Asunto(s)
Amígdala del Cerebelo , Brazo , Ritmo beta , Desempeño Psicomotor , Humanos , Amígdala del Cerebelo/fisiología , Masculino , Femenino , Adulto , Ritmo beta/fisiología , Desempeño Psicomotor/fisiología , Brazo/fisiología , Adulto Joven , Movimiento/fisiología , Persona de Mediana Edad , Epilepsia Refractaria/fisiopatología , Electroencefalografía/métodos
2.
J Neural Eng ; 21(4)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914073

RESUMEN

Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.


Asunto(s)
Brazo , Ritmo beta , Hipocampo , Humanos , Hipocampo/fisiología , Femenino , Ritmo beta/fisiología , Masculino , Adulto , Brazo/fisiología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Electroencefalografía/métodos , Electroencefalografía/clasificación , Análisis de Componente Principal , Adulto Joven , Reproducibilidad de los Resultados , Persona de Mediana Edad
3.
Clin Neurophysiol ; 152: 93-111, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37208270

RESUMEN

Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/efectos adversos , Electrodos , Neurofisiología
4.
J Neural Eng ; 19(4)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35803209

RESUMEN

Objective.This study aimed to characterize hippocampal neural signatures of uncertainty by measuring beta band power in the period prior to movement cue.Approach. Participants with epilepsy were implanted with hippocampal depth electrodes for stereo electroencephalographic (SEEG) monitoring. Hippocampal beta (13-30 Hz) power changes have been observed during motor tasks such as the direct reach (DR) and Go/No-Go (GNG) tasks. The primary difference between the tasks is the presence of uncertainty about whether movement should be executed. Previous research on cortical responses to uncertainty has found that baseline beta power changes with uncertainty. SEEG data were sampled throughout phases of the DR and GNG tasks. Beta-band power during the fixation phase was compared between the DR and GNG task using a Wilcoxon rank sum test. This unpaired test was also used to analyze response times from cue to task completion between tasks.Main results.Eight patients who performed both reaching tasks were analyzed in this study. Movement response times in the GNG task were on average 210 milliseconds slower than in the DR task. All patients exhibited a significantly increased response latency in the GNG task compared to the DR task (Wilcoxon rank-sum p-value < 0.001). Six out of eight patients demonstrated statistically significant differences in beta power in single hippocampal contacts between the fixation phases of the GNG and DR tasks. At the group level, baseline beta power was significantly lower in the GNG task than in the DR task (Wilcoxon rank-sum p-value < 0.001).Significance. This novel study found that, in the presence of task uncertainty, baseline beta power in the hippocampus is lower than in its absence. This finding implicates movement uncertainty as an important factor in baseline hippocampal beta power during movement preparation.


Asunto(s)
Electroencefalografía , Movimiento , Hipocampo , Humanos , Movimiento/fisiología , Tiempo de Reacción/fisiología , Incertidumbre
5.
J Neural Eng ; 19(1)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35086075

RESUMEN

Objective. The human orbitofrontal cortex (OFC) is involved in automatic response inhibition and conflict processing, but the mechanism of frequency-specific power changes that control these functions is unknown. Theta and gamma activity have been independently observed in the OFC during conflict processing, while theta-gamma interactions in other brain areas have been noted primarily in studies of memory. Within the OFC, it is possible that theta-gamma phase amplitude coupling (PAC) drives conflict processing. This study aims to characterize the coupled relationship between theta and gamma frequency bands in the OFC during conflict processing using a modified Stroop task.Approach. Eight epilepsy patients implanted with OFC stereotactic electroencephalography electrodes participated in a color-word modified Stroop task. PAC between theta phase and gamma amplitude was assessed to determine the timing and magnitude of neural oscillatory changes. Group analysis was conducted using a non-parametric cluster-permutationt-test on coherence values.Main results.Theta-low gamma (LG) PAC significantly increased in five out of eight patients during successful trials of the incongruent condition compared with the congruent condition. Significant increases in theta-LG PAC were most prominent during cue processing 200-800 ms after cue presentation. On group analysis, trial-averaged mean theta-LG PAC was statistically significantly greater in the incongruent condition compared to the congruent condition (p< 0.001, Cohen'sd= 0.51).Significance.For the first time, we report that OFC theta phase and LG amplitude coupling increases during conflict resolution. Given the delayed onset after cue presentation, OFC theta-LG PAC may contribute to conflict processing after conflict detection and before motor response. This explanation follows the hypothesis that global theta waves modulate local gamma signals. Understanding this relationship within the OFC will help further elucidate the neural mechanisms of human conflict resolution.


Asunto(s)
Conflicto Psicológico , Corteza Prefrontal , Electroencefalografía , Epilepsia , Humanos , Corteza Prefrontal/fisiología , Test de Stroop
6.
Front Physiol ; 12: 724027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925052

RESUMEN

In this paper, a new electromyographic phenomenon, referred to as Bursting Rate Variability (BRV), is reported. Not only does it manifest itself visually as a train of short periods of accrued surface electromyographic (sEMG) activity in the traces, but it has a deeper underpinning because the sEMG bursts are synchronous with wavelet packets in the D8 subband of the Daubechies 3 (db3) wavelet decomposition of the raw signal referred to as "D8 doublets"-which are absent during muscle relaxation. Moreover, the db3 wavelet decomposition reconstructs the entire sEMG bursts with two contiguous relatively high detail coefficients at level 8, suggesting a high incidence of two consecutive neuronal discharges. Most importantly, the timing between successive bursts shows some variability, hence the BRV acronym. Contrary to Heart Rate Variability (HRV), where the R-wave is easily identified, here, time-localization of the burst requires a statistical waveform matching between the "D8 doublet" and the burst in the raw sEMG signal. Furthermore, statistical fitting of the empirical distribution of return times shows a striking difference between control and quadriplegic subjects. Finally, the BRV rate appears to be within 60-88 bursts per minute on average among 9 human subjects, suggesting a possible connection between BRV and HRV.

7.
Neurosurg Focus ; 49(1): E4, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32610288

RESUMEN

OBJECTIVE: Motor brain-computer interface (BCI) represents a new frontier in neurological surgery that could provide significant benefits for patients living with motor deficits. Both the primary motor cortex and posterior parietal cortex have successfully been used as a neural source for human motor BCI, leading to interest in exploring other brain areas involved in motor control. The amygdala is one area that has been shown to have functional connectivity to the motor system; however, its role in movement execution is not well studied. Gamma oscillations (30-200 Hz) are known to be prokinetic in the human cortex, but their role is poorly understood in subcortical structures. Here, the authors use direct electrophysiological recordings and the classic "center-out" direct-reach experiment to study amygdaloid gamma-band modulation in 8 patients with medically refractory epilepsy. METHODS: The study population consisted of 8 epilepsy patients (2 men; age range 21-62 years) who underwent implantation of micro-macro depth electrodes for seizure localization and EEG monitoring. Data from the macro contacts sampled at 2000 Hz were used for analysis. The classic center-out direct-reach experiment was used, which consists of an intertrial interval phase, a fixation phase, and a response phase. The authors assessed the statistical significance of neural modulation by inspecting for nonoverlapping areas in the 95% confidence intervals of spectral power for the response and fixation phases. RESULTS: In 5 of the 8 patients, power spectral analysis showed a statistically significant increase in power within regions of the gamma band during the response phase compared with the fixation phase. In these 5 patients, the 95% bootstrapped confidence intervals of trial-averaged power in contiguous frequencies of the gamma band during the response phase were above, and did not overlap with, the confidence intervals of trial-averaged power during the fixation phase. CONCLUSIONS: To the authors' knowledge, this is the first time that direct neural recordings have been used to show gamma-band modulation in the human amygdala during the execution of voluntary movement. This work indicates that gamma-band modulation in the amygdala could be a contributing source of neural signals for use in a motor BCI system.


Asunto(s)
Amígdala del Cerebelo/fisiología , Epilepsia/fisiopatología , Movimiento/fisiología , Red Nerviosa/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Humanos , Corteza Motora/fisiología , Lóbulo Parietal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA