Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(4): e0012117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630833

RESUMEN

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.


Asunto(s)
Inteligencia Artificial , Microscopía , Microscopía/métodos , Humanos , Animales , Filariasis/diagnóstico , Filariasis/parasitología , Microfilarias/aislamiento & purificación , Algoritmos , Teléfono Inteligente , Filariasis Linfática/diagnóstico , Filariasis Linfática/parasitología
2.
Pathog Glob Health ; 118(1): 80-90, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37415348

RESUMEN

Malaria is a parasitic disease distributed in tropical areas but with a high number of imported cases in non-endemic countries. The most specific and sensitive malaria diagnostic methods are PCR and LAMP. However, both require specific equipment, extraction procedures and a cold chain. This study aims to solve some limitations of LAMP method with the optimization and validation of six LAMP assays, genus and species-specific, using an easy and fast extraction method, the incorporation of a reaction control assay, two ways (Dual) of result reading and reagent lyophilization. The Dual-LAMP assays were validated against the Nested-Multiplex Malaria PCR. A conventional column and saline extraction methods, and the use of lyophilized reaction tubes were also assessed. A new reaction control Dual-LAMP-RC assay was designed. Dual-LAMP-Pspp assay showed no cross-reactivity with other parasites, repeatability and reproducibility of 100%, a significant correlation between parasite concentration and time to amplification and a LoD of 1.22 parasites/µl and 5.82 parasites/µl using column and saline extraction methods, respectively. Sensitivity and specificity of the six Dual-LAMP assays reach values of 100% or close to this, being lower for the Dual-LAMP-Pm. The Dual-LAMP-RC assay worked as expected. Lyophilized Dual-LAMP results were concordant with the reference method. Dual-LAMP malaria assays with the addition of a new reaction control LAMP assay and the use of a fast and easy saline extraction method, provided low limit of detection, no cross-reactivity, and good sensitivity and specificity. Furthermore, the reagent lyophilization and the dual result reading allow their use in most settings.


Asunto(s)
Malaria , Humanos , Reproducibilidad de los Resultados , Malaria/diagnóstico , Malaria/parasitología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa Multiplex
3.
J Med Virol ; 94(11): 5260-5270, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35811284

RESUMEN

Early kinetics of SARS-CoV-2 viral load (VL) in plasma determined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) was evaluated as a predictor of poor clinical outcome in a prospective study and assessed in a retrospective validation cohort. Prospective observational single-center study including consecutive adult patients hospitalized with COVID-19 between November 2020 and January 2021. Serial plasma samples were obtained until discharge. Quantitative RT-PCR was performed to assess SARS-CoV-2 VL. The main outcomes were in-hospital mortality, admission to the Intensive Care Unit (ICU), and their combination (Poor Outcome). Relevant viremia (RV), established in the prospective study, was assessed in a retrospective cohort including hospitalized COVID-19 patients from April 2021 to May 2022, in which plasma samples were collected according to clinical criteria. Prospective cohort: 57 patients were included. RV was defined as at least a twofold increase in VL within ≤2 days or a VL > 300 copies/ml, in the first week. Patients with RV (N = 14; 24.6%) were more likely to die than those without RV (35.7% vs. 0%), needed ICU admission (57% vs. 0%) or had Poor Outcome (71.4% vs. 0%), (p < 0.001 for the three variables). Retrospective cohort: 326 patients were included, 18.7% presented RV. Patients with RV compared with patients without RV had higher rates of ICU-admission (odds ratio [OR]: 5.6 [95% confidence interval [CI]: 2.1-15.1); p = 0.001), mortality (OR: 13.5 [95% CI: 6.3-28.7]; p < 0.0001) and Poor Outcome (OR: 11.2 [95% CI: 5.8-22]; p < 0.0001). Relevant SARS-CoV-2 viremia in the first week of hospitalization was associated with higher in-hospital mortality, ICU admission, and Poor Outcome. Findings observed in the prospective cohort were confirmed in a larger validation cohort.


Asunto(s)
COVID-19 , Adulto , COVID-19/diagnóstico , Hospitalización , Humanos , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2 , Viremia
4.
Front Med (Lausanne) ; 9: 855639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783606

RESUMEN

Background: Interleukin 6 (IL6) levels and SARS-CoV-2 viremia have been correlated with COVID-19 severity. The association over time between them has not been assessed in a prospective cohort. Our aim was to evaluate the relationship between SARS-CoV-2 viremia and time evolution of IL6 levels in a COVID-19 prospective cohort. Methods: Secondary analysis from a prospective cohort including COVID-19 hospitalized patients from Hospital Universitario La Princesa between November 2020 and January 2021. Serial plasma samples were collected from admission until discharge. Viral load was quantified by Real-Time Polymerase Chain Reaction and IL6 levels with an enzyme immunoassay. To represent the evolution over time of both variables we used the graphic command twoway of Stata. Results: A total of 57 patients were recruited, with median age of 63 years (IQR [53-81]), 61.4% male and 68.4% Caucasian. The peak of viremia appeared shortly after symptom onset in patients with persistent viremia (more than 1 sample with > 1.3 log10 copies/ml) and also in those with at least one IL6 > 30 pg/ml, followed by a progressive increase in IL6 around 10 days later. Persistent viremia in the first week of hospitalization was associated with higher levels of IL6. Both IL6 and SARS-CoV-2 viral load were higher in males, with a quicker increase with age. Conclusion: In those patients with worse outcomes, an early peak of SARS-CoV-2 viral load precedes an increase in IL6 levels. Monitoring SARS-CoV-2 viral load during the first week after symptom onset may be helpful to predict disease severity in COVID-19 patients.

5.
J Clin Virol ; 152: 105166, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594784

RESUMEN

BACKGROUND: SARS-CoV-2 viral load and kinetics assessed in serial blood samples from hospitalised COVID-19 patients by RT-PCR are poorly understood. METHODS: We conducted an observational, prospective case series study in hospitalised COVID-19 patients. Clinical outcome data (Intensive Care Unit admission and mortality) were collected from all patients until discharge. Viremia was determined longitudinally during hospitalisation, in plasma and serum samples collected sequentially, using two commercial and standardised RT-PCR techniques approved for use in diagnosis of SARS-CoV-2. Viral load (copies/mL and log10) was determined with quantitative TaqPath™COVID-19 test. Persistent viremia (PV) was defined as two or more consecutive quantifiable viral loads detected in blood samples (plasma/serum) during hospitalisation. RESULTS: SARS-CoV-2 viremia was studied in 57 hospitalised COVID-19 patients. PV was detected in 16 (28%) patients. All of them, except for one who rapidly progressed to death, cleared viremia during hospitalisation. Poor clinical outcome occurred in 62.5% of patients with PV, while none of the negative patients or those with sporadic viremia presented this outcome (p < 0.0001). Viral load was significantly higher in patients with PV than in those with Sporadic Viremia (p < 0.05). Patients presented PV for a short period of time: median time from admission was 5 days (Range = 2-12) and 4.5 days (Range = 2-8) for plasma and serum samples, respectively. Similar results were obtained with all RT-PCR assays for both types of samples. CONCLUSIONS: Detection of persistent SARS-CoV-2 viremia, by real time RT-PCR, expressed as viral load over time, could allow identifying hospitalised COVID-19 patients at risk of poor clinical outcome.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Cinética , Estudios Prospectivos , ARN Viral , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Carga Viral , Viremia/diagnóstico
6.
BMC Res Notes ; 15(1): 147, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468833

RESUMEN

OBJECTIVE: Main malaria diagnosis is based on microscopic examination combined with rapid diagnostic tests. Both methods have low sensitivity and specificity. Loop-mediated isothermal amplification techniques have shown a sensitivity similar to PCR but with lower times of performance. This study aimed to assess a commercial LAMP for the diagnosis of malaria (Alethia® Malaria) against the Nested-Multiplex-Malaria PCR, including the analytical sensitivity and the operational characteristics. RESULTS: One hundred five samples out of 114 rendered valid results, obtaining 85 positive samples and 18 negative samples with an agreement of 98% compared to the reference method with a sensitivity, specificity and kappa coefficient of 98.84%, 94.74% and 0.94 respectively, with only two discrepant samples. The turnaround time was estimated in 1 h and 30 min, with a cost of 32.67€ per determination. The results showed several advantages of the Alethia® Malaria, as it was easy to perform, minimal training requirement and 40 min run. Moreover, it includes an internal control to avoid false negatives. However, it also showed some limitations such as the need for a specific amplification and detection device, the detection of only Plasmodium spp. and a very high price.


Asunto(s)
Malaria , Plasmodium knowlesi , Humanos , Malaria/diagnóstico , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa Multiplex , Técnicas de Amplificación de Ácido Nucleico , Plasmodium knowlesi/genética , España
7.
J Virol Methods ; 300: 114411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34910983

RESUMEN

Presence of SARS-CoV-2 RNA in serum (viremia) of COVID-19 patients has been related to poor prognosis and death. The aim of this study was to evaluate both the ability to detect viremia in COVID-19 patients of two commercial reverse real-time-PCR (rRT-PCR) tests, Cobas® and TaqPath™, comparing them with a gold standard method, and their implementation in microbiology laboratories. This retrospective cohort study included 303 adult patients (203 diagnosed with COVID-19 and 100 non-COVID-19 patients) admitted to a tertiary hospital, with at least one serum sample collected within the first 48 h from admission. A total of 365 serum samples were included: 100 from non-COVID patients (pre-pandemic and pandemic control groups) and 265 from COVID-19 patients. Serum samples were considered positive when at least one target was detected. All patients in control groups showed negative viremia. Cobas® and TaqPath™ tests showed specificity and Positive Predictive Value over 96%. Nevertheless, sensitivity (53.72 and 73.63, respectively) and Negative Predictive Value (64.78 and 75) were lower. Viremia difference between ICU and non-ICU patients was significant (p ≤ 0.001) for both techniques. Consequently, SARS-CoV-2 viremia detection by both rRT-PCR tests should be considered a good tool to stratify COVID-19 patients and could be implemented in microbiology laboratories.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , ARN Viral/genética , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
8.
Sci Rep ; 11(1): 13134, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162948

RESUMEN

COVID-19 has overloaded national health services worldwide. Thus, early identification of patients at risk of poor outcomes is critical. Our objective was to analyse SARS-CoV-2 RNA detection in serum as a severity biomarker in COVID-19. Retrospective observational study including 193 patients admitted for COVID-19. Detection of SARS-CoV-2 RNA in serum (viremia) was performed with samples collected at 48-72 h of admission by two techniques from Roche and Thermo Fischer Scientific (TFS). Main outcome variables were mortality and need for ICU admission during hospitalization for COVID-19. Viremia was detected in 50-60% of patients depending on technique. The correlation of Ct in serum between both techniques was good (intraclass correlation coefficient: 0.612; p < 0.001). Patients with viremia were older (p = 0.006), had poorer baseline oxygenation (PaO2/FiO2; p < 0.001), more severe lymphopenia (p < 0.001) and higher LDH (p < 0.001), IL-6 (p = 0.021), C-reactive protein (CRP; p = 0.022) and procalcitonin (p = 0.002) serum levels. We defined "relevant viremia" when detection Ct was < 34 with Roche and < 31 for TFS. These thresholds had 95% sensitivity and 35% specificity. Relevant viremia predicted death during hospitalization (OR 9.2 [3.8-22.6] for Roche, OR 10.3 [3.6-29.3] for TFS; p < 0.001). Cox regression models, adjusted by age, sex and Charlson index, identified increased LDH serum levels and relevant viremia (HR = 9.87 [4.13-23.57] for TFS viremia and HR = 7.09 [3.3-14.82] for Roche viremia) as the best markers to predict mortality. Viremia assessment at admission is the most useful biomarker for predicting mortality in COVID-19 patients. Viremia is highly reproducible with two different techniques (TFS and Roche), has a good consistency with other severity biomarkers for COVID-19 and better predictive accuracy.


Asunto(s)
COVID-19/sangre , ARN Viral/sangre , SARS-CoV-2/genética , Viremia/sangre , Anciano , Biomarcadores/sangre , COVID-19/mortalidad , COVID-19/virología , Cuidados Críticos , Femenino , Hospitalización , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Factores de Riesgo , España , Viremia/virología
9.
Malar J ; 20(1): 16, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407529

RESUMEN

BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum. METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method. RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed. CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Genotipo , Técnicas de Genotipaje/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Plasmodium falciparum/efectos de los fármacos , Reproducibilidad de los Resultados
10.
Malar J ; 19(1): 259, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680522

RESUMEN

BACKGROUND: Plasmodium vivax malaria is characterized by the presence of dormant liver-stage parasites, called hypnozoites, which can cause malaria relapses after an initial attack. Primaquine, which targets liver hypnozoites, must be used in combination with a schizonticidal agent to get the radical cure. However, relapses can sometimes occur in spite of correct treatment, due to different factors such as a diminished metabolization of primaquine. CASE PRESENTATION: In January 2019, a 21 years old woman with residence in Madrid, returning from a trip to Venezuela with clinical symptoms compatible with malaria infection, was diagnosed with vivax malaria. Chloroquine for 3 days plus primaquine for 14 days was the elected treatment. Two months later and after a second trip to Venezuela, the patient presented a second P. vivax infection, which was treated as the previous one. A third P. vivax malaria episode was diagnosed 2 months later, after returning from a trip to Morocco, receiving chloroquine for 3 days but increasing to 28 days the primaquine regimen, and with no more relapses after 6 months of follow up. The genotyping of P. vivax in the three malaria episodes revealed that the same strain was present in the different relapses. Upon confirmation of correct adherence to the treatment, non-description of resistance in the infection area and the highly unlikely re-infection on subsequent trips or stays in Spain, a possible metabolic failure was considered. CYP2D6 encodes the human cytochrome P450 isoenzyme 2D6 (CYP2D6), responsible for primaquine activation. The patient was found to have a CYP2D6*4/*1 genotype, which turns out in an intermediate metabolizer phenotype, which has been related to P. vivax relapses. CONCLUSIONS: The impairment in CYP2D6 enzyme could be the most likely cause of P. vivax relapses in this patient. This highlights the importance of considering the analysis of CYP2D6 gene polymorphisms in cases of P. vivax relapses after a correct treatment and, especially, it should be considered in any study of dosage and duration of primaquine treatment.


Asunto(s)
Antimaláricos/uso terapéutico , Citocromo P-450 CYP2D6/metabolismo , Malaria Vivax/tratamiento farmacológico , Primaquina/uso terapéutico , Antimaláricos/metabolismo , Femenino , Humanos , Malaria Vivax/parasitología , Fenotipo , Plasmodium vivax/fisiología , Primaquina/metabolismo , Recurrencia , España , Venezuela , Adulto Joven
12.
Ocul Immunol Inflamm ; 27(2): 197-202, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29474137

RESUMEN

PURPOSE: Describing the utility of Polymerase Chain Reaction for Cytomegalovirus (CMV-PCR) in the diagnosis of suspected viral anterior uveitis (AU). PATIENTS AND METHODS: We analyzed aqueous humor (AH) CMV-PCR positivity and treatment modifications in 47 eyes of 46 patients with viral uveitis and its correlation with high intraocular pressure (HIOP), uveitis clinical characteristics and time intervals from samples to uveitis diagnosis and to relapse. RESULTS: CMV-PCR positive results occurred in 13 eyes (27.7%) of 12 patients. They were more frequent in HIOP eyes (34.2%, p = 0.047) and with Posner-Schlossman Syndrome (56.2%, p = 0.002). CMV-PCR positivity (p = 0.001) and HIOP (p = 0.038) increased the probability of treatment change. Although CMV-PCR positive results decreased over time (p = 0.002), they were not related to activity or proximity to inflammatory uveitis episode. CONCLUSION: HIOP AU eyes should be considered for CMV-PCR AH analysis due to possible treatment modifications.


Asunto(s)
Humor Acuoso/virología , Infecciones por Citomegalovirus/diagnóstico , Citomegalovirus/genética , ADN Viral/análisis , Infecciones Virales del Ojo/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Uveítis Anterior/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Citomegalovirus/virología , Infecciones Virales del Ojo/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Uveítis Anterior/virología , Adulto Joven
14.
Malar J ; 17(1): 335, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30236116

RESUMEN

Following publication of the original article [1], it was flagged by one of the authors that the name of the P. falciparum gene marker of artemisinin resistance 'pfkelch13' was (incorrectly) written as "pfketch13", which was repeated seven times in different parts of the published paper.

15.
Malar J ; 17(1): 286, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30086757

RESUMEN

BACKGROUND: The Kingdom of Saudi Arabia is seeking malaria eradication. Malaria transmission has been very low over the last few years. Discovered cases of Plasmodium falciparum infection are assigned a treatment protocol of artemisinin-based combination therapy, which consists of artesunate in addition to sulfadoxine-pyrimethamine rather than the traditional chloroquine, which has high resistance rates worldwide. This study aims to investigate the presence of different gene mutations concerning anti-malarial drug resistance (pfdhfr, pfdhps, pfmdr1, pfcrt, pfcytb, pfkelch13) to identify whether drug-resistant alleles are present in this area of the Kingdom and whether the country's treatment protocol is still suitable for Plasmodium bearing a resistance mutation [corrected]. METHODS: Blood samples were collected from patients suffering from symptoms suggesting malaria coming to King Faisal Hospital, Taif, from February to August 2016. Diagnosis was performed by Giemsa-stained thin and thick blood films, rapid diagnostic test and PCR. Positive P. falciparum samples were further subjected to series of PCR amplification reactions targeting genes related with drug resistance (pfdhfr, pfdhps, pfmdr1, pfcrt, pfcytb, pfketch13). RESULTS: Twenty-six cases were positives, 13 infected with P. falciparum, of those, 4 cases were autochthonous, and 13 with Plasmodium vivax. The results of the gene mutation detection confirmed that there was no mutation related to resistance to artemisinin or atovaquone, on the other hand chloroquine resistance alleles were detected in 31% of samples. Moreover, point mutations in the pfdhfr and pfdhps genes, related resistance to antifolate drugs, were detected in all characterized samples. CONCLUSIONS: Haplotypes of P. falciparum in the western region of the Kingdom of Saudi Arabia exhibit high resistance against antifolate drugs. These results should be extensively discussed when planning to modify anti-malarial drug protocols in the future.


Asunto(s)
Enfermedades Transmisibles Importadas/parasitología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Mutación/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto , Humanos , Masculino , Mutación/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Arabia Saudita , Adulto Joven
16.
Malar J ; 16(1): 20, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061871

RESUMEN

BACKGROUND: Microscopy and rapid diagnosis tests have a limited sensitivity in diagnosis of malaria by Plasmodium ovale. The LAMP kit (LoopAMP®) can be used in the field without special equipment and could have an important role in malaria control programmes in endemic areas and for malaria diagnosis in returned travellers. The performance of the Pan primer of the kit in detecting malaria by P. ovale was compared with the results of standard nPCR in samples of patients returning from P. ovale endemic areas. METHODS: Plasmodium ovale positive samples (29, tested by PCR and/or microscopy) and malaria negative specimens (398, tested by microscopy and PCR) were collected in different hospitals of Europe from June 2014 to March 2016 and frozen at -20 °C. Boil and spin method was used to extract DNA from all samples and amplification was performed with LoopAMP® MALARIA kit (Eiken Chemical, Japan) in an automated turbidimeter (Eiken 500). The results of LAMP read by turbidimetry and with the naked eye were compared. RESULTS: The kit showed a sensitivity of 100% and a specificity of 97.24% with positive and negative predictive values of 72.5 and 100%, respectively. Naked eyed readings were in accordance with turbidimetry readings (sensitivity, 92.5%, specificity, 98.96% and positive and negative predictive values, respectively, 90.24 and 99.22%). The limit of detection of LAMP assay for P. ovale was between 0.8 and 2 parasites/µl. CONCLUSIONS: The Pan primer of the Malaria kit LoopAMP® can detect P. ovale at very low-levels and showed a predictive negative value of 100%. This tool can be useful in malaria control and elimination programmes and in returned travellers from P. ovale endemic areas. Naked eye readings are equivalent to automated turbidimeter readings in specimens obtained with EDTA.


Asunto(s)
Malaria/diagnóstico , Malaria/parasitología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium ovale/aislamiento & purificación , Europa (Continente) , Humanos , Plasmodium ovale/genética , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...