Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37434504

RESUMEN

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Esquizofrenia , Masculino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , Genómica
2.
Nat Neurosci ; 26(7): 1208-1217, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37365313

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Eje Cerebro-Intestino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Estudios Transversales , Teorema de Bayes , Reproducibilidad de los Resultados , Citocinas
3.
Nat Hum Behav ; 7(6): 1001-1017, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36864136

RESUMEN

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.


Asunto(s)
Encéfalo , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Encéfalo/diagnóstico por imagen
4.
medRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865328

RESUMEN

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

5.
Eur J Pain ; 26(5): 1163-1175, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290697

RESUMEN

BACKGROUND: Estimating others' pain is a challenging inferential process, associated with a high degree of uncertainty. While much is known about uncertainty's effect on self-regarding actions, its impact on other-regarding decisions for pain have yet to be characterized. AIM: The present study exploited models of probabilistic decision-making to investigate how uncertainty influences the valuation and assessment of another's pain. MATERIALS & METHODS: We engaged 63 dyads (43 strangers and 20 romantic couples) in a task where individual choices affected the pain delivered to either oneself (the agent) or the other member of the dyad. At each trial, agents were presented with cues predicting a given pain intensity with an associated probability of occurrence. Agents either chose a sure (mild decrease of pain) or risky (50% chance of avoiding pain altogether) management option, before bidding on their choice. A heat stimulation was then issued to the target (self or other). Decision-makers were then asked to rate the pain administered to the target. RESULTS: We found that the higher the expected pain, the more risk-averse agents became, in line with findings in value-based decision-making. Furthermore, agents gambled less on another individual's pain (especially strangers) and placed higher bids on pain relief than they did for themselves. Most critically, the uncertainty associated with expected pain dampened ratings made for strangers' pain. This contrasted with the effect on an agent's own pain, for which risk had a marginal hyperalgesic effect. DISCUSSION & CONCLUSION: Overall, our results suggested that risk selectively affects decision-making on a stranger's suffering, both at the level of assessment and treatment selection, by (1) leading to underestimation, (2) privileging sure options and (3) altruistically allocating more money to insure the treatment's success. SIGNIFICANCE: Uncertainty biases decision-making but it is unclear if it affects choice behavior on pain for others. In examining this question, we found individuals were generally risk-seeking when faced with looming pain, but more so for self; and assigned higher monetary values and subjective ratings on another's pain. However, uncertainty dampened agents' assessment of a stranger's pain, suggesting latent variables may contradict overt altruism. This bias may underlie pain underestimation in clinical settings.


Asunto(s)
Altruismo , Toma de Decisiones , Toma de Decisiones/fisiología , Humanos , Dolor , Incertidumbre
6.
Biol Psychiatry ; 90(9): 596-610, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509290

RESUMEN

Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
7.
Transl Psychiatry ; 11(1): 399, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285187

RESUMEN

Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Esquizofrenia , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
8.
Mol Psychiatry ; 25(3): 692-695, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30705424

RESUMEN

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.

9.
Mol Psychiatry ; 25(3): 584-602, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283035

RESUMEN

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.


Asunto(s)
Trastorno Autístico/genética , Ganglios Basales/patología , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual/genética , Adulto , Trastorno del Espectro Autista/genética , Encéfalo/patología , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Bases de Datos Factuales , Femenino , Globo Pálido/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Tamaño de los Órganos/genética , Putamen/patología , Esquizofrenia/genética
10.
Neuroimage ; 203: 116155, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31494251

RESUMEN

Most of human genome is present in two copies (maternal and paternal). However, segments of the genome can be deleted or duplicated, and many of these genomic variations (known as Copy Number Variants) are associated with psychiatric disorders. 16p11.2 copy number variants (breakpoint 4-5) confer high risk for neurodevelopmental disorders and are associated with structural brain alterations of large effect-size. Methods used in previous studies were unable to investigate the onset of these alterations and whether they evolve with age. In this study, we aim at characterizing age-related effects of 16p11.2 copy number variants by analyzing a group with a broad age range including younger individuals. A large normative developmental dataset was used to accurately adjust for effects of age. We normalized volumes of segmented brain regions as well as volumes of each voxel defined by tensor-based morphometry. Results show that the total intracranial volumes, the global gray and white matter volumes are respectively higher and lower in deletion and duplication carriers compared to control subjects at 4.5 years of age. These differences remain stable through childhood, adolescence and adulthood until 23 years of age (range: 0.5 to 1.0 Z-score). Voxel-based results are consistent with previous findings in 16p11.2 copy number variant carriers, including increased volume in the calcarine cortex and insula in deletions, compared to controls, with an inverse effect in duplication carriers (1.0 Z-score). All large effect-size voxel-based differences are present at 4.5 years and seem to remain stable until the age of 23. Our results highlight the stability of a neuroimaging endophenotype over 2 decades during which neurodevelopmental symptoms evolve at a rapid pace.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN/genética , Adolescente , Adulto , Niño , Preescolar , Humanos , Adulto Joven
11.
Biol Psychiatry ; 84(4): 253-264, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29778275

RESUMEN

BACKGROUND: 16p11.2 breakpoint 4 to 5 copy number variants (CNVs) increase the risk for developing autism spectrum disorder, schizophrenia, and language and cognitive impairment. In this multisite study, we aimed to quantify the effect of 16p11.2 CNVs on brain structure. METHODS: Using voxel- and surface-based brain morphometric methods, we analyzed structural magnetic resonance imaging collected at seven sites from 78 individuals with a deletion, 71 individuals with a duplication, and 212 individuals without a CNV. RESULTS: Beyond the 16p11.2-related mirror effect on global brain morphometry, we observe regional mirror differences in the insula (deletion > control > duplication). Other regions are preferentially affected by either the deletion or the duplication: the calcarine cortex and transverse temporal gyrus (deletion > control; Cohen's d > 1), the superior and middle temporal gyri (deletion < control; Cohen's d < -1), and the caudate and hippocampus (control > duplication; -0.5 > Cohen's d > -1). Measures of cognition, language, and social responsiveness and the presence of psychiatric diagnoses do not influence these results. CONCLUSIONS: The global and regional effects on brain morphometry due to 16p11.2 CNVs generalize across site, computational method, age, and sex. Effect sizes on neuroimaging and cognitive traits are comparable. Findings partially overlap with results of meta-analyses performed across psychiatric disorders. However, the lack of correlation between morphometric and clinical measures suggests that CNV-associated brain changes contribute to clinical manifestations but require additional factors for the development of the disorder. These findings highlight the power of genetic risk factors as a complement to studying groups defined by behavioral criteria.


Asunto(s)
Encéfalo/patología , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Niño , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Adulto Joven
12.
PLoS One ; 12(5): e0178185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562617

RESUMEN

The flexibility of the human hand in object manipulation is essential for daily life activities, but remains relatively little explored with quantitative methods. On the one hand, recent taxonomies describe qualitatively the classes of hand postures for object grasping and manipulation. On the other hand, the quantitative analysis of hand function has been generally restricted to precision grip (with thumb and index opposition) during lifting tasks. The aim of the present study is to fill the gap between these two kinds of descriptions, by investigating quantitatively the forces exerted by the hand on an instrumented object in a set of representative manipulation tasks. The object was a parallelepiped object able to measure the force exerted on the six faces and its acceleration. The grasping force was estimated from the lateral force and the unloading force from the bottom force. The protocol included eleven tasks with complementary constraints inspired by recent taxonomies: four tasks corresponding to lifting and holding the object with different grasp configurations, and seven to manipulating the object (rotation around each of its axis and translation). The grasping and unloading forces and object rotations were measured during the five phases of the actions: unloading, lifting, holding or manipulation, preparation to deposit, and deposit. The results confirm the tight regulation between grasping and unloading forces during lifting, and extend this to the deposit phase. In addition, they provide a precise description of the regulation of force exchanges during various manipulation tasks spanning representative actions of daily life. The timing of manipulation showed both sequential and overlapping organization of the different sub-actions, and micro-errors could be detected. This phenomenological study confirms the feasibility of using an instrumented object to investigate complex manipulative behavior in humans. This protocol will be used in the future to investigate upper-limb dexterity in patients with sensory-motor impairments.


Asunto(s)
Fuerza de la Mano/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Desempeño Psicomotor , Análisis y Desempeño de Tareas , Adulto Joven
13.
Biol Psychiatry ; 80(2): 129-139, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26742926

RESUMEN

BACKGROUND: Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS: This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS: IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS: The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.


Asunto(s)
Trastorno Autístico , Deleción Cromosómica , Trastornos de los Cromosomas , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Disfunción Cognitiva , Variaciones en el Número de Copia de ADN/genética , Función Ejecutiva/fisiología , Discapacidad Intelectual , Inteligencia/genética , Lenguaje , Memoria/fisiología , Destreza Motora/fisiología , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Niño , Preescolar , Trastornos de los Cromosomas/diagnóstico por imagen , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
14.
JAMA Psychiatry ; 73(1): 20-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26629640

RESUMEN

IMPORTANCE: The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES: To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS: This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES: Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS: Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE: The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.


Asunto(s)
Trastorno del Espectro Autista/psicología , Trastorno Autístico/psicología , Trastornos de los Cromosomas/psicología , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Cognición , Discapacidad Intelectual/psicología , Esquizofrenia/genética , Adolescente , Adulto , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Estudios de Casos y Controles , Cerebelo/anomalías , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/genética , Estudios de Cohortes , Comorbilidad , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/genética , Epilepsia/epidemiología , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Masculino , Microcefalia/epidemiología , Microcefalia/genética , Persona de Mediana Edad , Malformaciones del Sistema Nervioso/epidemiología , Malformaciones del Sistema Nervioso/genética , Esquizofrenia/epidemiología , Psicología del Esquizofrénico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...