Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 5(5): e01667, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31193135

RESUMEN

Iduronate-2-sulfatase (IDS) is a lysosomal enzyme involved in the metabolism of the glycosaminoglycans heparan (HS) and dermatan (DS) sulfate. Mutations on IDS gene produce mucopolysaccharidosis II (MPS II), characterized by the lysosomal accumulation of HS and DS, leading to severe damage of the central nervous system (CNS) and other tissues. In this study, we used a neurochemistry and proteomic approaches to identify the brain distribution of IDS and its interacting proteins on wild-type mouse brain. IDS immunoreactivity showed a robust staining throughout the entire brain, suggesting an intracellular reactivity in nerve cells and astrocytes. By using affinity purification and mass spectrometry we identified 187 putative IDS partners-proteins, mainly hydrolases, cytoskeletal proteins, transporters, transferases, oxidoreductases, nucleic acid binding proteins, membrane traffic proteins, chaperons and enzyme modulators, among others. The interactions with some of these proteins were predicted by using bioinformatics tools and confirmed by co-immunoprecipitation analysis and Blue Native PAGE. In addition, we identified cytosolic IDS-complexes containing proteins from predicted highly connected nodes (hubs), with molecular functions including catalytic activity, redox balance, binding, transport, receptor activity and structural molecule activity. The proteins identified in this study would provide new insights about IDS physiological role into the CNS and its potential role in the brain-specific protein networks.

2.
Curr Mol Med ; 13(4): 514-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22934847

RESUMEN

Cancer cells require a robust supply of reduced nitrogen to produce nucleotides, non-essential amino acids and a high cellular redox activity. Glutamine provides a major substrate for respiration as well as nitrogen for the production of proteins, hexosamines, and macromolecules. Therefore, glutamine is one of key molecules in cancer metabolism during cell proliferation. The notion of targeting glutamine metabolism in cancer, originally rationalized by the number of pathways fed by this nutrient, has been reinforced by more recent studies demonstrating that its metabolism is regulated by oncogenes. Glutamine can exert its effects by modulating redox homeostasis, bioenergetics, nitrogen balance or other functions, including by being a precursor of glutathione, the major nonenzymatic cellular antioxidant. Glutaminase (GA) is the first enzyme that converts glutamine to glutamate, which is in turn converted to alpha-ketoglutarate for further metabolism in the tricarboxylic acid cycle. Different GA isoforms in mammals are encoded by two genes, Gls and Gls2. As each enzymatic form of GA has distinct kinetic and molecular characteristics, it has been speculated that the differential regulation of GA isoforms may reflect distinct functions or requirements in different tissues or cell states. GA encoded by Gls gene (GLS) has been demonstrated to be regulated by oncogenes and to support tumor cell growth. GA encoded by Gls2 gene (GLS2) reduces cellular sensitivity to reactive oxygen species associated apoptosis possibly through glutathione-dependent antioxidant defense, and therefore to behave more like a tumor suppressor. Thus, modulation of GA function may be a new therapeutic target for cancer treatment.


Asunto(s)
Glutaminasa/metabolismo , Isoenzimas/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Humanos , Neoplasias/enzimología
3.
Plant Physiol Biochem ; 44(1): 85-90, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16531053

RESUMEN

A cDNA encoding an acyl-CoA binding protein (ACBP) homologue has been cloned from a cDNA library made from mRNA isolated from epidermis of young leaves of Agave americana L. The derived amino acid sequence reveals a protein corresponding to the membrane-associated form of ACBPs only previously described in Arabidopsis and rice. Northern blot analysis showed that the A. americana ACBP gene is mainly expressed in the epidermis of mature zone of the leaves. The epidermis of A. americana leaves have a well developed cuticle with the highest amounts of the cuticular components waxes, cutin and cutan suggesting a potential role of the protein in cuticle formation.


Asunto(s)
Agave/metabolismo , ADN Complementario/genética , Inhibidor de la Unión a Diazepam/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/aislamiento & purificación , Datos de Secuencia Molecular , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...