Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38774451

RESUMEN

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
2.
Blood ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684038

RESUMEN

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

3.
Blood ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643512

RESUMEN

Plasma cells (PC) are highly specialized cells representing the end stage of B cell differentiation. We have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation model. However, a major challenge exists to decipher the spatiotemporal epigenetic and transcriptional programs that drives the early stages of PC differentiation. We combined single cell (sc) RNA-seq and single cell ATAC-seq to decipher the trajectories involved in PC differentiation. ScRNA-seq experiments revealed a strong heterogeneity of the preplasmablastic and plasmablastic stages. Among genes that were commonly identified using scATAC-seq and scRNA-seq, we identified several transcription factors with significant stage specific potential importance in PC differentiation. Interestingly, differentially accessible peaks characterizing the preplasmablastic stage were enriched in motifs of BATF3, FOS and BATF, belonging to the AP-1 transcription factor family, that may represent key transcriptional nodes involved in PCD. Integration of transcriptomic and epigenetic data at the single cell level revealed that a population of preplasmablasts already undergone epigenetic remodeling related to PC profile together with UPR activation and are committed to differentiate in PC. These results and the supporting data generated with our in vitro PC differentiation model provide a unique resource for the identification of molecular circuits that are crucial for early and mature plasma cell maturation and biological functions. These data thus provide critical insights into epigenetic- and transcriptional-mediated reprogramming events that sustain PC differentiation.

5.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301653

RESUMEN

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Asunto(s)
Linfocitos B , Tonsila Palatina , Humanos , Adulto , Linfocitos B/metabolismo
6.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405853

RESUMEN

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

7.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38237141

RESUMEN

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
8.
Annu Rev Pathol ; 19: 371-396, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37832942

RESUMEN

Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.


Asunto(s)
Epigenómica , Linfoma , Humanos , Cromatina , Epigénesis Genética , Mutación
9.
Br J Haematol ; 204(1): 160-170, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881141

RESUMEN

Mantle cell lymphoma (MCL) is clinically and biologically heterogeneous. While various prognostic features have been proposed, none currently impact therapy selection, particularly in older patients, for whom treatment is primarily dictated by age and comorbidities. Herein, we undertook a comprehensive comparison of clinicopathological features in a cohort of patients 60 years and older, uniformly treated with bendamustine and rituximab, with a median survival of >8 years. The strongest prognostic indicators in this cohort were a high-risk call by a simplified MCL international prognostic index (s-MIPI) (HR: 3.32, 95% CI: 1.65-6.68 compared to low risk), a high-risk call by MCL35 (HR: 10.34, 95% CI: 2.37-45.20 compared to low risk) and blastoid cytology (HR: 4.21, 95% CR: 1.92-9.22 compared to classic). Patients called high risk by both the s-MIPI and MCL35 had the most dismal prognosis (HR: 11.58, 95% CI: 4.10-32.72), while those with high risk by either had a moderate but clinically relevant prognosis (HR: 2.95, 95% CI: 1.49-5.82). A robust assay to assess proliferation, such as MCL35, along with stringent guidelines for cytological evaluation of MCL, in combination with MIPI, may be a strong path to risk-stratify older MCL patients in future clinical trials.


Asunto(s)
Linfoma de Células del Manto , Adulto , Humanos , Anciano , Linfoma de Células del Manto/patología , Rituximab/efectos adversos , Clorhidrato de Bendamustina/uso terapéutico , Biomarcadores , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
10.
Best Pract Res Clin Haematol ; 36(4): 101513, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38092483

RESUMEN

For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.


Asunto(s)
Neoplasias Hematológicas , Linfoma de Células B , Linfoma , Humanos , Aberraciones Cromosómicas , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , Mutación , Linfoma/genética
11.
Semin Hematol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151379

RESUMEN

Chronic lymphocytic leukemia (CLL) is characterized by widespread alterations in the genetic and epigenetic landscapes which seem to underlie the variable clinical manifestations observed in patients. Over the last decade, epigenomic studies have described the whole-genome maps of DNA methylation and chromatin features of CLL and normal B cells, identifying distinct epigenetic mechanisms operating in tumoral cells. DNA methylation analyses have identified that the CLL methylome contains imprints of the cell of origin, as well as of the proliferative history of the tumor cells, with both being strong independent prognostic predictors. Moreover, single-cell analysis revealed a higher degree of DNA methylation noise in CLL cells, which associates with transcriptional plasticity and disease aggressiveness. Integrative analysis of chromatin has uncovered chromatin signatures, as well as regulatory regions specifically active in each CLL subtype or in Richter transformed samples. Unique transcription factor (TF) binding motifs are overrepresented on those regions, suggesting that altered TF networks operate from disease initiation to progression as nongenetic factors mediating the oncogenic transcriptional profiles. Multiomics analysis has identified that response to treatment is modulated by an epigenetic imprint, and that treatments affect chromatin through the activity of particular set of TFs. Additionally, the epigenome is an axis of therapeutic vulnerability in CLL, as it can be targeted by inhibitors of histone modifying enzymes, that have shown promising preclinical results. Altogether, this review aims at summarizing the major findings derived from published literature to distill how altered epigenomic mechanisms contribute to CLL origin, evolution, clinical behavior, and response to treatment.

12.
Sci Rep ; 13(1): 16839, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803049

RESUMEN

MALAT1 long non-coding RNA has oncogenic roles but has been poorly studied in indolent B-cell neoplasms. Here, MALAT1 expression was analyzed using RNA-seq, microarrays or qRT-PCR in primary samples from clinico-biological subtypes of chronic lymphocytic leukemia (CLL, n = 266), paired Richter transformation (RT, n = 6) and follicular lymphoma (FL, n = 61). In peripheral blood (PB) CLL samples, high MALAT1 expression was associated with a significantly shorter time to treatment independently from other known prognostic factors. Coding genes expressed in association with MALAT1 in CLL were predominantly related to oncogenic pathways stimulated in the lymph node (LN) microenvironment. In RT paired samples, MALAT1 levels were lower, concordant with their acquired increased independency of external signals. Moreover, MALAT1 levels in paired PB/LN CLLs were similar, suggesting that the prognostic value of MALAT1 expression in PB is mirroring expression differences already present in LN. Similarly, high MALAT1 expression in FL predicted for a shorter progression-free survival, in association with expression pathways promoting FL pathogenesis. In summary, MALAT1 expression is related to pathophysiology and more aggressive clinical behavior of indolent B-cell neoplasms. Particularly in CLL, its levels could be a surrogate marker of the microenvironment stimulation and may contribute to refine the clinical management of these patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma Folicular , ARN Largo no Codificante , Humanos , Genes Relacionados con las Neoplasias , Leucemia Linfocítica Crónica de Células B/patología , Linfoma Folicular/genética , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral/genética
13.
Nat Biotechnol ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537502

RESUMEN

Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

14.
Blood ; 141(24): 2955-2960, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989492

RESUMEN

The chromatin activation landscape of chronic lymphocytic leukemia (CLL) with stereotyped B-cell receptor immunoglobulin is currently unknown. In this study, we report the results of a whole-genome chromatin profiling of histone 3 lysine 27 acetylation of 22 CLLs from major subsets, which were compared against nonstereotyped CLLs and normal B-cell subpopulations. Although subsets 1, 2, and 4 did not differ much from their nonstereotyped CLL counterparts, subset 8 displayed a remarkably distinct chromatin activation profile. In particular, we identified 209 de novo active regulatory elements in this subset, which showed similar patterns with U-CLLs undergoing Richter transformation. These regions were enriched for binding sites of 9 overexpressed transcription factors. In 78 of 209 regions, we identified 113 candidate overexpressed target genes, 11 regions being associated with more than 2 adjacent genes. These included blocks of up to 7 genes, suggesting local coupregulation within the same genome compartment. Our findings further underscore the uniqueness of subset 8 CLL, notable for the highest risk of Richter's transformation among all CLLs and provide additional clues to decipher the molecular basis of its clinical behavior.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Cromatina/genética , Linfocitos B , Receptores de Antígenos de Linfocitos B/genética
15.
Cephalalgia ; 43(2): 3331024221146317, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36759321

RESUMEN

BACKGROUND: Cortical spreading depolarization, the cause of migraine aura, is a short-lasting depolarization wave that moves across the brain cortex, transiently suppressing neuronal activity. Prophylactic treatments for migraine, such as topiramate or valproate, reduce the number of cortical spreading depression events in rodents. OBJECTIVE: To investigate whether cortical spreading depolarization with and without chronic treatment with topiramate or valproate affect the DNA methylation of the cortex. METHODS: Sprague-Dawley rats were intraperitoneally injected with saline, topiramate or valproate for four weeks when cortical spreading depolarization were induced and genome-wide DNA methylation was performed in the cortex of six rats per group. RESULTS: The DNA methylation profile of the cortex was significantly modified after cortical spreading depolarization, with and without topiramate or valproate. Interestingly, topiramate reduced by almost 50% the number of differentially methylated regions, whereas valproate increased them by 17%, when comparing to the non-treated group after cortical spreading depolarization induction. The majority of the differentially methylated regions lay within intragenic regions, and the analyses of functional group over-representation retrieved several enriched functions, including functions related to protein processing in the cortical spreading depolarization without treatment group; functions related to metabolic processes in the cortical spreading depolarization with topiramate group; and functions related to synapse and ErbB, MAPK or retrograde endocannabinoid signaling in the cortical spreading depolarization with valproate group. CONCLUSIONS: Our results may provide insights into the underlying physiological mechanisms of migraine with aura and emphasize the role of epigenetics in migraine susceptibility.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Ratas , Animales , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Topiramato/farmacología , Topiramato/uso terapéutico , Ratas Sprague-Dawley , Metilación de ADN , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Depresión de Propagación Cortical/fisiología
16.
Nat Commun ; 14(1): 309, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658118

RESUMEN

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). We characterize 58 primary human RS samples by genome-wide DNA methylation and whole-transcriptome profiling. Our comprehensive approach determines RS DNA methylation profile and unravels a CLL epigenetic imprint, allowing CLL-RS clonal relationship assessment without the need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-based classifiers were developed, and testing on landmark DLBCL datasets identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/1772 samples. The classification robustly identifies phenotypes very similar to RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs. In this work, RS multi-omics characterization determines oncogenic mechanisms, establishes a surrogate marker for CLL-RS clonal relationship, and provides a clinically relevant classifier for a subset of primary "RS-type DLBCL" with unfavorable prognosis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfocitos B/patología , Metilación de ADN/genética
17.
Br J Haematol ; 200(3): 280-290, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121003

RESUMEN

Chronic lymphocytic leukaemia (CLL) is not only characterised by driver genetic alterations but by extensive epigenetic changes. Over the last decade, epigenomic studies have described the DNA methylome, chromatin accessibility, histone modifications and the three-dimensional (3D) genome architecture of CLL. Beyond its regulatory role, the DNA methylome contains imprints of the cellular origin and proliferative history of CLL cells. These two aspects are strong independent prognostic factors. Integrative analyses of chromatin marks have uncovered novel regulatory elements and altered transcription factor networks as non-genetic means mediating gene deregulation in CLL. Additionally, CLL cells display a disease-specific pattern of 3D genome interactions. From the technological perspective, we are currently witnessing a transition from bulk omics to single-cell analyses. This review aims at summarising the major findings from the epigenomics field as well as providing a prospect of the present and future of single-cell analyses in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Epigenómica , Metilación de ADN , Epigénesis Genética , Cromatina/genética
18.
Redox Biol ; 54: 102353, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777200

RESUMEN

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Homeostasis , Grasa Intraabdominal/metabolismo , Ratones , Obesidad/genética , Obesidad/metabolismo , Proteómica
19.
Theranostics ; 12(4): 1715-1729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198065

RESUMEN

Background: Human multiple myeloma (MM) cell lines (HMCLs) have been widely used to understand the molecular processes that drive MM biology. Epigenetic modifications are involved in MM development, progression, and drug resistance. A comprehensive characterization of the epigenetic landscape of MM would advance our understanding of MM pathophysiology and may attempt to identify new therapeutic targets. Methods: We performed chromatin immunoprecipitation sequencing to analyze histone mark changes (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) on 16 HMCLs. Results: Differential analysis of histone modification profiles highlighted links between histone modifications and cytogenetic abnormalities or recurrent mutations. Using histone modifications associated to enhancer regions, we identified super-enhancers (SE) associated with genes involved in MM biology. We also identified promoters of genes enriched in H3K9me3 and H3K27me3 repressive marks associated to potential tumor suppressor functions. The prognostic value of genes associated with repressive domains and SE was used to build two distinct scores identifying high-risk MM patients in two independent cohorts (CoMMpass cohort; n = 674 and Montpellier cohort; n = 69). Finally, we explored H3K4me3 marks comparing drug-resistant and -sensitive HMCLs to identify regions involved in drug resistance. From these data, we developed epigenetic biomarkers based on the H3K4me3 modification predicting MM cell response to lenalidomide and histone deacetylase inhibitors (HDACi). Conclusions: The epigenetic landscape of MM cells represents a unique resource for future biological studies. Furthermore, risk-scores based on SE and repressive regions together with epigenetic biomarkers of drug response could represent new tools for precision medicine in MM.


Asunto(s)
Histonas , Mieloma Múltiple , Epigénesis Genética/genética , Epigenómica , Código de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...