Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3103, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248289

RESUMEN

The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.


Asunto(s)
Acetilcolina , Interferón gamma , Animales , Ratones , Linfocitos , Inmunidad Innata , Células Asesinas Naturales , Ansiedad
2.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609826

RESUMEN

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Canales Iónicos/metabolismo , Lisosomas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Canales de Potasio/metabolismo
3.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36116006

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Asunto(s)
Enfermedad de Huntington , Ratones , Humanos , Animales , Enfermedad de Huntington/tratamiento farmacológico , Modelos Teóricos , Imidazoles/farmacología , Glicoesfingolípidos , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
4.
Front Mol Neurosci ; 16: 1333745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292023

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.

5.
Life (Basel) ; 12(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36013357

RESUMEN

Rat dorsal root ganglion (DRG) neurons express 5-hydroxytryptamine receptors (5-HT3Rs). To elucidate their physiological role in the modulation of sensory signaling, we aimed to quantify their functional expression in newborn and adult rat DRG neurons, as well as their ability to modulate the Ca2+-dependent neurotransmitter release, by means of electrophysiological techniques combined with fluorescence-based Ca2+ imaging. The selective 5-HT3R agonist mCPBG (10 µM) elicited whole-cell currents in 92.5% of adult DRG neurons with a significantly higher density current than in responding newborn cells (52.2%), suggesting an increasing serotoninergic modulation on primary afferent cells during development. Briefly, 5-HT3Rs expressed by adult DRG neurons are permeable to Ca2+ ions, with a measured fractional Ca2+ current (i.e., the percentage of total current carried by Ca2+ ions, Pf) of 1.0%, similar to the value measured for the human heteromeric 5-HT3A/B receptor (Pf = 1.1%), but lower than that of the human homomeric 5-HT3A receptor (Pf = 3.5%). mCPBG applied to co-cultures of newborn DRG and spinal neurons significantly increased the miniature excitatory postsynaptic currents (mEPSCs) frequency in a subset of recorded spinal neurons, even in the presence of Cd2+, a voltage-activated Ca2+ channel blocker. Considered together, our findings indicate that the Ca2+ influx through heteromeric 5-HT3Rs is sufficient to increase the spontaneous neurotransmitter release from DRG to spinal neurons.

6.
Biomedicines ; 10(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625812

RESUMEN

Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular "dysmaturity" of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.

7.
J Neurosci ; 42(14): 3037-3048, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35193928

RESUMEN

Chronic pain is sustained by a maladaptive form of neuronal plasticity occurring in all stations of the pain neuraxis, including cortical regions of the pain matrix. We report that chronic inflammatory pain induced by unilateral injection of complete Freund's adjuvant (CFA) in the hindpaw of male mice was associated with a progressive build-up of perineuronal nets (PNNs) in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and reticular thalamic nucleus. In the SSC, the density of PNNs labeled by Wisteria floribunda agglutinin (WFA) was increased at both 3 and 7 d following CFA injection, but only after 7 d in the mPFC. The number of parvalbumin (PV)-positive interneurons enwrapped by WFA+/PNNs was also increased in all three brain regions of mice injected with CFA. Remarkably, PNN degradation induced by intracortical infusion of chondroitinase-ABC significantly reduced mechanical and thermal pain, and also reversed the increased frequency of IPSCs recorded in layer 5 pyramidal neurons of the contralateral SSC in CFA-injected mice. These findings suggest a possible relationship between cortical PNNs and nociceptive sensitization, and support the hypothesis that PNNs maintain their plasticity in the adult life and regulate cortical responses to sensory inputs.SIGNIFICANCE STATEMENT The brain extracellular matrix not only provides structural support, but also regulates synapse formation and function, and modulates neuronal excitability. We found that chronic inflammatory pain in mice enhances the density of perineuronal nets (PNNs) in the somatosensory cortex and medial prefrontal cortex. Remarkably, enzymatic degradation of PNNs in the somatosensory cortex caused analgesia and reversed alterations of inhibitory synaptic transmission associated with chronic pain. These findings disclose a novel mechanism of nociceptive sensitization and support a role for PNNs in mechanisms of neuronal plasticity in the adult brain.


Asunto(s)
Dolor Crónico , Corteza Somatosensorial , Animales , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Parvalbúminas/metabolismo , Corteza Somatosensorial/metabolismo
8.
J Neuroinflammation ; 18(1): 44, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588880

RESUMEN

BACKGROUND: Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. METHODS: Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. RESULTS: In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl- in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. CONCLUSIONS: Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced.


Asunto(s)
Adenosina Trifosfato/farmacología , Calcio/metabolismo , Epilepsia Refractaria/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Microglía/metabolismo , Lóbulo Temporal/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Epilepsia Refractaria/patología , Humanos , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/patología
9.
Ann Clin Transl Neurol ; 7(9): 1726-1731, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32761786

RESUMEN

We compared GABAergic function and neuronal excitability in the hippocampal tissue of seven sporadic MTLE patients with a patient carrying a SCN1A loss-of-function mutation. All had excellent outcome from anterior temporal lobectomy, and neuropathological study always showed characteristic hippocampal sclerosis (Hs). Compared to MTLE patients, there was a more severe impairment of GABAergic transmission, due to the lower GABAergic activity related to the NaV 1.1 loss-of-function, in addition to the typical GABA-current rundown, a hallmark of sporadic MTLE. Our results give evidence that a pharmacological rescuing of the GABAergic dysfunction may represent a promising strategy for the treatment of these patients.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ácido gamma-Aminobutírico/metabolismo , Adulto , Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Mutación con Pérdida de Función , Masculino , Técnicas de Placa-Clamp , Esclerosis/patología
10.
Schizophr Bull ; 46(6): 1471-1481, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32506121

RESUMEN

Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.


Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Fenómenos Electrofisiológicos/efectos de los fármacos , Quinurenina/metabolismo , Oxazinas/metabolismo , Oxazinas/farmacología , Corteza Prefrontal/metabolismo , Receptores de Glutamato Metabotrópico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Adulto , Animales , Antipsicóticos/administración & dosificación , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Oxazinas/administración & dosificación , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/deficiencia , Bancos de Tejidos
11.
J Neural Eng ; 17(3): 036032, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32485702

RESUMEN

OBJECTIVE: The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. APPROACH: The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. MAIN RESULTS: The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. SIGNIFICANCE: The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI.


Asunto(s)
Interfaces Cerebro-Computador , Nanotubos de Carbono , Animales , Corteza Cerebral , Electrodos , Polímeros , Ratas
12.
J Am Heart Assoc ; 9(5): e014923, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078787

RESUMEN

Background High blood pressure (BP) has long been recognized as a major health threat and, particularly, a major risk factor for stroke, cardiovascular disease, and end-organ damage. However, the identification of a novel, alternative, integrative approach for the control of BP and cardiovascular protection is still needed. Methods and Results Sixty-nine uncontrolled hypertension patients, aged 40 to 68 years, on antihypertensive medication were enrolled in 2 double-blind studies. Forty-five were randomized to placebo or a new nutraceutical combination named AkP05, and BP, endothelial function, and circulating nitric oxide were assessed before and at the end of 4 weeks of treatment. Twenty-four patients were randomized to diuretic or AkP05 for 4 weeks and underwent a cardiopulmonary exercise test to evaluate the effects of AkP05 on functional capacity of the cardiovascular, pulmonary, and muscular systems. Vascular and molecular studies were undertaken on mice to characterize the action of the single compounds contained in the AkP05 nutraceutical combination. AkP05 supplementation reduced BP, improved endothelial function, and increased nitric oxide release; cardiopulmonary exercise test revealed that AkP05 increased maximum O2 uptake, stress tolerance, and maximal power output. In mice, AkP05 reduced BP and improved endothelial function, evoking increased nitric oxide release through the PKCα/Akt/endothelial nitric oxide synthase pathway and reducing reactive oxygen species production via NADPH-oxidase inhibition. These effects were mediated by synergism of the single compounds of AkP05. Conclusions This is the first study reporting positive effects of a nutraceutical combination on the vasculature and exercise tolerance in treated hypertensive patients. Our findings suggest that AkP05 may be used as an adjunct for the improvement of cardiovascular protection and to better control BP in uncontrolled hypertension.


Asunto(s)
Suplementos Dietéticos , Tolerancia al Ejercicio/fisiología , Hipertensión/fisiopatología , Hipertensión/terapia , Óxido Nítrico/sangre , Preparaciones de Plantas/uso terapéutico , Adulto , Anciano , Animales , Bacopa , Camellia sinensis , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Ginkgo biloba , Humanos , Hipertensión/sangre , Masculino , Ratones , Persona de Mediana Edad , Fosfatidilserinas/uso terapéutico , Fitoterapia , Especies Reactivas de Oxígeno/sangre
13.
FASEB J ; 33(12): 14204-14220, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31665922

RESUMEN

Polymorphic variants of the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are linked to schizophrenia. Because abnormalities of cortical GABAergic interneurons lie at the core of the pathophysiology of schizophrenia, we examined whether mGlu3 receptors influence the developmental trajectory of cortical GABAergic transmission in the postnatal life. mGlu3-/- mice showed robust changes in the expression of interneuron-related genes in the prefrontal cortex (PFC), including large reductions in the expression of parvalbumin (PV) and the GluN1 subunit of NMDA receptors. The number of cortical cells enwrapped by perineuronal nets was increased in mGlu3-/- mice, suggesting that mGlu3 receptors shape the temporal window of plasticity of PV+ interneurons. Electrophysiological measurements of GABAA receptor-mediated responses revealed a more depolarized reversal potential of GABA currents in the somata of PFC pyramidal neurons in mGlu3-/- mice at postnatal d 9 associated with a reduced expression of the K+/Cl- symporter. Finally, adult mGlu3-/- mice showed lower power in electroencephalographic rhythms at 1-45 Hz in quiet wakefulness as compared with their wild-type counterparts. These findings suggest that mGlu3 receptors have a strong impact on the development of cortical GABAergic transmission and cortical neural synchronization mechanisms corroborating the concept that genetic variants of mGlu3 receptors may predispose to psychiatric disorders.-Imbriglio, T., Verhaeghe, R., Martinello, K., Pascarelli, M. T., Chece, G., Bucci, D., Notartomaso, S., Quattromani, M., Mascio, G., Scalabrì, F., Simeone, A., Maccari, S., Del Percio, C., Wieloch, T., Fucile, S., Babiloni, C., Battaglia, G., Limatola, C., Nicoletti, F., Cannella, M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors.


Asunto(s)
Corteza Cerebral/anomalías , Embrión de Mamíferos/anomalías , Neuronas GABAérgicas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Biomarcadores , Corteza Cerebral/metabolismo , Femenino , Regulación de la Expresión Génica , Genes Homeobox , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , ARN Mensajero , Receptores de Glutamato Metabotrópico/genética
14.
Eur J Med Chem ; 180: 51-61, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31299587

RESUMEN

We designed the synthesis of a small library of 3-substituted-3,6-diazabicyclo[3.1.1]heptanes whose affinity on neuronal nicotinic receptors (nAChRs) was evaluated. Among the synthesized compounds, the 5-(3,6-diazabicyclo[3.1.1]heptane-3-yl)-N-(2-fluorophenyl)nicotinamide 43 proved to be the most interesting compound with α4ß2Ki value of 10 pM and a very high α7/α4ß2 selectivity. Furthermore, compounds 35, 39 and 43 elicited a selective partial agonist activity for α4ß2 nAChR subtype. Finally, in this paper we also report the conclusions on the 3,6-diazabicyclo[3.1.1]heptanes as ligands for nAChRs, resulting from our consolidated structure activity relationship (SAR) studies on this template.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Neuronas/efectos de los fármacos , Niacinamida/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/química , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuronas/metabolismo , Niacinamida/síntesis química , Niacinamida/química , Agonistas Nicotínicos/síntesis química , Agonistas Nicotínicos/química , Relación Estructura-Actividad
15.
Commun Biol ; 2: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044170

RESUMEN

Little is known about the properties and function of ion channels that affect synaptic terminal-resting properties. One particular subthreshold-active ion channel, the Kv7 potassium channel, is highly localized to axons, but its role in regulating synaptic terminal intrinsic excitability and release is largely unexplored. Using electrophysiological recordings together with computational modeling, we found that the KV7 current was active at rest in adult hippocampal mossy fiber synaptic terminals and enhanced their membrane conductance. The current also restrained action potential-induced Ca2+ influx via N- and P/Q-type Ca2+ channels in boutons. This was associated with a substantial reduction in the spike half-width and afterdepolarization following presynaptic spikes. Further, by constraining spike-induced Ca2+ influx, the presynaptic KV7 current decreased neurotransmission onto CA3 pyramidal neurons and short-term synaptic plasticity at the mossy fiber-CA3 synapse. This is a distinctive mechanism by which KV7 channels influence hippocampal neuronal excitability and synaptic plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Canales de Potasio KCNQ/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Región CA3 Hipocampal/metabolismo , Biología Computacional/métodos , Masculino , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
16.
Epilepsia ; 59(2): 449-459, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29283181

RESUMEN

OBJECTIVE: γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in adult central nervous system, and profound alterations of GABA receptor functions are linked to temporal lobe epilepsy (TLE). Here we describe the functional relationships between GABA receptors type B (GABAB R) and type A (GABAA R) in human temporal cortex and how TLE affects this aspect of GABAergic signaling. METHODS: Miniature inhibitory postsynaptic currents (mIPSCs) were recorded by patch-clamp techniques from human L5 pyramidal neurons in slices from temporal cortex tissue obtained from surgery. RESULTS: We describe a constitutive functional crosstalk between GABAB Rs and GABAA Rs in human temporal layer 5 pyramidal neurons, which is lost in epileptic tissues. The activation of GABAB Rs by baclofen, in addition to the expected reduction of mIPSC frequency, produced, in cortex of nonepileptic patients, the prolongation of mIPSC rise and decay times, thus increasing the inhibitory net charge associated with a single synaptic event. Block of K+ channels did not prevent the increase of decay time and charge. Protein kinase A (PKA) blocker KT5720 and pertussis toxin inhibited the action of baclofen, whereas 8Br-cAMP mimicked the GABAB R action. The same GABAB R-mediated modulation of GABAA Rs was observed in pyramidal neurons of rat temporal cortex, with both PKA and PKC involved in the process. In cortices from TLE patients and epileptic rats, baclofen lost its ability to modulate mIPSCs. SIGNIFICANCE: Our results highlight the association of TLE with functional changes of GABAergic signaling that may be related to seizure propagation, and suggest that the selective activation of a definite subset of nonpresynaptic GABAB Rs may be therapeutically useful in TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Neocórtex/metabolismo , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Lóbulo Temporal/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adolescente , Adulto , Animales , Baclofeno/farmacología , Carbazoles/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Modelos Animales de Enfermedad , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Inhibidores Enzimáticos/farmacología , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Epilepsia/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Agonistas de Receptores GABA-B/farmacología , Humanos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Persona de Mediana Edad , Agonistas Muscarínicos/toxicidad , Neocórtex/efectos de los fármacos , Neocórtex/fisiopatología , Técnicas de Placa-Clamp , Toxina del Pertussis/farmacología , Pilocarpina/toxicidad , Proteína Quinasa C/metabolismo , Células Piramidales/efectos de los fármacos , Pirroles/farmacología , Ratas , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/fisiopatología
17.
Neuropharmacology ; 115: 51-59, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27498071

RESUMEN

The neuronal K+/Cl- symporter, KCC2, shapes synaptic responses mediated by Cl--permeant GABAA receptors. Moving from the evidence that excitatory neurotransmission drives changes in KCC2 expression in cerebellar neurons, we studied the regulation of KCC2 expression by group-I metabotropic glutamate (mGlu) receptors in the cerebellum of adult mice. Mice lacking mGlu5 receptors showed a large reduction in cerebellar KCC2 protein levels and a loss of KCC2 immunoreactivity in Purkinje cells. Similar changes were seen in mice treated with the mGlu5 receptor antagonist, MPEP, whereas treatment with the mGlu5 receptor positive allosteric modulator (PAM), VU0360172, increased KCC2 expression. In contrast, pharmacological inhibition of mGlu1 receptors with JNJ16259685 enhanced cerebellar KCC2 protein levels and KCC2 immunoreactivity in Purkinje cells, whereas treatment with the mGlu1 receptor PAM, RO0711401, reduced KCC2 expression. To examine whether the reduction in KCC2 expression caused by the absence or the inhibition of mGlu5 receptors could affect GABAergic transmission, we performed electrophysiological and behavioral studies. Recording of extracellular action potentials in Purkinje cells showed that the inhibitory effect of the GABAA receptor agonist, muscimol, was lost in cerebellar slices prepared from mGlu5-/- mice or from mice treated systemically with MPEP, in line with the reduction in KCC2 expression. Similarly, motor impairment caused by the GABAA receptor PAM, diazepam, was attenuated in mice pre-treated with MPEP. These findings disclose a novel function of mGlu5 receptors in the cerebellum and suggest that mGlu5 receptor ligands might influence GABAergic transmission in the cerebellum and affect motor responses to GABA-mimetic drugs. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Asunto(s)
Cerebelo/metabolismo , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Simportadores/biosíntesis , Potenciales de Acción/fisiología , Animales , Cerebelo/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Expresión Génica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Niacinamida/análogos & derivados , Niacinamida/farmacología , Células de Purkinje/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Simportadores/genética , Cotransportadores de K Cl
18.
FASEB J ; 29(8): 3389-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25911614

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit modulate nicotine consumption, and the human CHRNA5 rs16969968 polymorphism, causing the replacement of the aspartic acid residue at position 398 with an asparagine (α5DN), has recently been associated with increased use of tobacco and higher incidence of lung cancer. We show that in ventral midbrain neurons, the α5 subunit is essential for heteromeric nAChR-induced intracellular-free Ca(2+) concentration elevations and that in α5(-/-) mice, a class of large-amplitude nicotine-evoked currents is lost. Furthermore, the expression of the α5DN subunit is not able to restore nicotinic responses, indicating a loss of function by this subunit in native neurons. To understand how α5DN impairs heteromeric nAChR functions, we coexpressed α4, α5, or α5DN subunits with a dimeric concatemer (ß2α4) in a heterologous system, to obtain nAChRs with fixed stoichiometry. Both α5(ß2α4)2 and α5DN(ß2α4)2 nAChRs yielded similar levels of functional expression and Ca(2+) permeability, measured as fractional Ca(2+) currents (8.2 ± 0.7% and 8.0 ± 1.9%, respectively), 2-fold higher than α4(ß2α4)2. Our results indicate that the loss of function of nicotinic responses observed in α5DN-expressing ventral midbrain neurons is neither due to an intrinsic inability of this subunit to form functional nAChRs nor to an altered Ca(2+) permeability but likely to intracellular modulation.


Asunto(s)
Calcio/metabolismo , Mesencéfalo/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/metabolismo
19.
Neuron ; 85(2): 346-63, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25578363

RESUMEN

Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing.


Asunto(s)
Acetilcolina/metabolismo , Potenciales de Acción/fisiología , Axones/metabolismo , Fibras Colinérgicas/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Neuronas Aferentes/metabolismo , Receptor Muscarínico M1/metabolismo , Potenciales Sinápticos/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Ratones , Plasticidad Neuronal , Neuronas/metabolismo , Potasio/metabolismo , Receptores Muscarínicos/metabolismo , Transmisión Sináptica
20.
Cereb Cortex ; 24(1): 67-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22997174

RESUMEN

Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.


Asunto(s)
Adenosina Quinasa/fisiología , Adenosina/fisiología , Homeostasis/fisiología , Sinapsis/fisiología , Adenosina Quinasa/genética , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Espacio Extracelular/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Purinas/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...