Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Leukemia ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486128

RESUMEN

Loss-of-function mutations in NFKBIE, which encodes for the NF-κB inhibitor IκBε, are frequent in chronic lymphocytic leukemia (CLL) and certain other B-cell malignancies and have been associated with accelerated disease progression and inferior responses to chemotherapy. Using in vitro and in vivo murine models and primary patient samples, we now show that NFKBIE-mutated CLL cells are selected by microenvironmental signals that activate the NF-κB pathway and induce alterations within the tumor microenvironment that can allow for immune escape, including expansion of CD8+ T-cells with an exhausted phenotype and increased PD-L1 expression on the malignant B-cells. Consistent with the latter observations, we find increased expression of exhaustion markers on T-cells from patients with NFKBIE-mutated CLL. In addition, we show that NFKBIE-mutated murine CLL cells display selective resistance to ibrutinib and report inferior outcomes to ibrutinib treatment in NFKBIE-mutated CLL patients. These findings suggest that NFKBIE mutations can contribute to CLL progression through multiple mechanisms, including a bidirectional crosstalk with the microenvironment and reduced sensitivity to BTK inhibitor treatment.

2.
Blood Adv ; 8(8): 1920-1933, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38359376

RESUMEN

ABSTRACT: This works defines, to the best of our knowledge, for the first time a molecular circuit connecting nicotinamide mononucleoside phosphoribosyl transferase (NAMPT) activity to the B-cell receptor (BCR) pathway. Using 4 distinct xenograft models derived from patients with Richter syndrome (RS-PDX), we show that BCR cross-linking results in transcriptional activation of the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme NAMPT, with increased protein expression, in turn, positively affecting global cellular NAD levels and sirtuins activity. NAMPT blockade, by using the novel OT-82 inhibitor in combination with either BTK or PI3K inhibitors (BTKi or PI3Ki), induces rapid and potent apoptotic responses in all 4 models, independently of their mutational profile and the expression of the other NAD biosynthetic enzymes, including nicotinate phosphoribosyltransferase. The connecting link in the circuit is represented by AKT that is both tyrosine- and serine-phosphorylated by PI3K and deacetylated by sirtuin 1 and 2 to obtain full kinase activation. Acetylation (ie, inhibition) of AKT after OT-82 administration was shown by 2-dimensional gel electrophoresis and immunoprecipitation. Consistently, pharmacological inhibition or silencing of sirtuin 1 and 2 impairs AKT activation and induces apoptosis of RS cells in combination with PI3Ki or BTKi. Lastly, treatment of RS-PDX mice with the combination of PI3Ki and OT-82 results in significant inhibition of tumor growth, with evidence of in vivo activation of apoptosis. Collectively, these data highlight a novel application for NAMPT inhibitors in combination with BTKi or PI3Ki in aggressive lymphomas.


Asunto(s)
Benzamidas , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Pirazoles , Piridinas , Humanos , Animales , Ratones , NAD/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Nicotinamida Fosforribosiltransferasa
3.
Blood ; 140(22): 2335-2347, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084319

RESUMEN

A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eµ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eµ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Quinasas Asociadas a Receptores de Interleucina-1/genética , Modelos Animales de Enfermedad , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores Toll-Like , Macrófagos/metabolismo
4.
Blood ; 138(12): 1053-1066, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-33900379

RESUMEN

B-cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A, and CDKN2B, which block cell-cycle progression. We further show that introduction of genetic lesions that downregulate these cell-cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B, and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B, and TP53 frequently co-occur in Richter syndrome (RS), and BCR stimulation of human RS cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR-inhibitor treatment and are synergistically sensitive to the combination of a BCR and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.


Asunto(s)
Transformación Celular Neoplásica , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Leucemia Linfocítica Crónica de Células B , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Ratones , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
5.
Leukemia ; 33(10): 2416-2428, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30872780

RESUMEN

The BCL-2 inhibitor venetoclax has only limited activity in DLBCL despite frequent BCL-2 overexpression. Since constitutive activation of the B cell receptor (BCR) pathway has been reported in both ABC and GCB DLBCL, we investigated whether targeting SYK or BTK will increase sensitivity of DLBCL cells to venetoclax. We report that pharmacological inhibition of SYK or BTK synergistically enhances venetoclax sensitivity in BCL-2-positive DLBCL cell lines with an activated BCR pathway in vitro and in a xenograft model in vivo, despite the only modest direct cytotoxic effect. We further show that these sensitizing effects are associated with inhibition of the downstream PI3K/AKT pathway and changes in the expression of MCL-1, BIM, and HRK. In addition, we show that BCR-dependent GCB DLBCL cells are characterized by deficiency of the phosphatase SHP1, a key negative regulator of the BCR pathway. Re-expression of SHP1 in GCB DBLCL cells reduces SYK, BLNK, and GSK3 phosphorylation and induces corresponding changes in MCL1, BIM, and HRK expression. Together, these findings suggest that SHP1 deficiency is responsible for the constitutive activation of the BCR pathway in GCB DLBCL and identify SHP1 and BCL-2 as potential predictive markers for response to treatment with a venetoclax/BCR inhibitor combination.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Quinasa Syk/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Cell Death Differ ; 26(3): 531-547, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29899382

RESUMEN

Anti-apoptotic Bcl-2 proteins are upregulated in different cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL), enabling survival by inhibiting pro-apoptotic Bcl-2-family members and inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-mediated Ca2+-signaling. A peptide tool (Bcl-2/IP3R Disruptor-2; BIRD-2) was developed to abrogate the interaction of Bcl-2 with IP3Rs by targeting Bcl-2's BH4 domain. BIRD-2 triggers cell death in primary CLL cells and in DLBCL cell lines. Particularly, DLBCL cells with high levels of IP3R2 were sensitive to BIRD-2. Here, we report that BIRD-2-induced cell death in DLBCL cells does not only depend on high IP3R2-expression levels, but also on constitutive IP3 signaling, downstream of the tonically active B-cell receptor. The basal Ca2+ level in SU-DHL-4 DLBCL cells was significantly elevated due to the constitutive IP3 production. This constitutive IP3 signaling fulfilled a pro-survival role, since inhibition of phospholipase C (PLC) using U73122 (2.5 µM) caused cell death in SU-DHL-4 cells. Milder inhibition of IP3 signaling using a lower U73122 concentration (1 µM) or expression of an IP3 sponge suppressed both BIRD-2-induced Ca2+ elevation and apoptosis in SU-DHL-4 cells. Basal PLC/IP3 signaling also fulfilled a pro-survival role in other DLBCL cell lines, including Karpas 422, RI-1 and SU-DHL-6 cells, whereas PLC inhibition protected these cells against BIRD-2-evoked apoptosis. Finally, U73122 treatment also suppressed BIRD-2-induced cell death in primary CLL, both in unsupported systems and in co-cultures with CD40L-expressing fibroblasts. Thus, constitutive IP3 signaling in lymphoma and leukemia cells is not only important for cancer cell survival, but also represents a vulnerability, rendering cancer cells dependent on Bcl-2 to limit IP3R activity. BIRD-2 seems to switch constitutive IP3 signaling from pro-survival into pro-death, presenting a plausible therapeutic strategy.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Transfección
7.
Br J Pharmacol ; 176(22): 4402-4415, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30266036

RESUMEN

BACKGROUND AND PURPOSE: Many cancer cells depend on anti-apoptotic B-cell lymphoma 2 (Bcl-2) proteins for their survival. Bcl-2 antagonism through Bcl-2 homology 3 (BH3) mimetics has emerged as a novel anti-cancer therapy. ABT-199 (Venetoclax), a recently developed BH3 mimetic that selectively inhibits Bcl-2, was introduced into the clinic for treatment of relapsed chronic lymphocytic leukaemia. Early generations of Bcl-2 inhibitors evoked sustained Ca2+ responses in pancreatic acinar cells (PACs) inducing cell death. Therefore, BH3 mimetics could potentially be toxic for the pancreas when used to treat cancer. Although ABT-199 was shown to kill Bcl-2-dependent cancer cells without affecting intracellular Ca2+ signalling, its effects on PACs have not yet been determined. Hence, it is essential and timely to assess whether this recently approved anti-leukaemic drug might potentially have pancreatotoxic effects. EXPERIMENTAL APPROACH: Single-cell Ca2+ measurements and cell death analysis were performed on isolated mouse PACs. KEY RESULTS: Inhibition of Bcl-2 via ABT-199 did not elicit intracellular Ca2+ signalling on its own or potentiate Ca2+ signalling induced by physiological/pathophysiological stimuli in PACs. Although ABT-199 did not affect cell death in PACs, under conditions that killed ABT-199-sensitive cancer cells, cytosolic Ca2+ extrusion was slightly enhanced in the presence of ABT-199. In contrast, inhibition of Bcl-xL potentiated pathophysiological Ca2+ responses in PACs, without exacerbating cell death. CONCLUSION AND IMPLICATIONS: Our results demonstrate that apart from having a modest effect on cytosolic Ca2+ extrusion, ABT-199 does not substantially alter intracellular Ca2+ homeostasis in normal PACs and should be safe for the pancreas during cancer treatment. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Asunto(s)
Células Acinares/efectos de los fármacos , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Señalización del Calcio/efectos de los fármacos , Sulfonamidas/farmacología , Células Acinares/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Páncreas/citología , Fragmentos de Péptidos , Proteínas Proto-Oncogénicas , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores
8.
Bepa - Boletim Epidemiológico Paulista ; 13(152): 19-32, ago. 2016. tab
Artículo en Portugués | Sec. Est. Saúde SP, SESSP-CTDPROD, Sec. Est. Saúde SP, SESSP-ACVSES | ID: biblio-1060597

RESUMEN

A definição de absenteísmo ambulatorial é o não comparecimento do paciente a um procedimento previamente agendado em unidade de saúde, sem nenhuma notificação. Esta ausência priva outros pacientes de atendimento, além de causar transtornos de natureza administrativa e financeira. A proposta deste trabalho é analisar as causas do absenteísmo ambulatorial e quantificar a dimensão do problema em ambulatórios de especialidades. O estudo, descritivo, foi realizado com base na relação entre consultas agendadas e consultas não efetuadas por não comparecimento dos pacientes, no período de 2011 a 2015, nas unidades de saúde da Administração Direta e Organizações Sociais da Secretaria de Estado da Saúde de São Paulo. O absenteísmo não é um problema local, ele ocorre em vários países. A correção do problema merece atenção dos administradores já que entre as causas encontram-se aquelas ligadas a fatores socioeconômicos e comportamentais, exigindo que diferentes categorias profissionais trabalhem em equipe, além de propostas estruturadas e uso intensivo de tecnologia de comunicação.


Asunto(s)
Absentismo , Atención Ambulatoria , Instituciones de Atención Ambulatoria , Servicios de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...