Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32858747

RESUMEN

Cancer is characterized by genomic instability leading to deletion or amplification of oncogenes or tumor suppressors. However, most of the altered regions are devoid of known cancer drivers. Here, we identify lncRNAs frequently lost or amplified in cancer. Among them, we found amplified lncRNA associated with lung cancer-1 (ALAL-1) as frequently amplified in lung adenocarcinomas. ALAL-1 is also overexpressed in additional tumor types, such as lung squamous carcinoma. The RNA product of ALAL-1 is able to promote the proliferation and tumorigenicity of lung cancer cells. ALAL-1 is a TNFα- and NF-κB-induced cytoplasmic lncRNA that specifically interacts with SART3, regulating the subcellular localization of the protein deubiquitinase USP4 and, in turn, its function in the cell. Interestingly, ALAL-1 expression inversely correlates with the immune infiltration of lung squamous tumors, while tumors with ALAL-1 amplification show lower infiltration of several types of immune cells. We have thus unveiled a pro-oncogenic lncRNA that mediates cancer immune evasion, pointing to a new target for immune potentiation.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Evasión Inmune/genética , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Células A549 , Adenocarcinoma del Pulmón/genética , Antígenos de Neoplasias/genética , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , FN-kappa B/genética , Oncogenes/genética , Proteasas Ubiquitina-Específicas/genética
2.
3.
J Exp Clin Cancer Res ; 38(1): 172, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014355

RESUMEN

BACKGROUND: Thousands of long noncoding RNAs (lncRNAs) are aberrantly expressed in various types of cancers, however our understanding of their role in the disease is still very limited. METHODS: We applied RNAseq analysis from patient-derived data with validation in independent cohort of patients. We followed these studies with gene regulation analysis as well as experimental dissection of the role of the identified lncRNA by multiple in vitro and in vivo methods. RESULTS: We analyzed RNA-seq data from tumors of 456 CRC patients compared to normal samples, and identified SNHG15 as a potentially oncogenic lncRNA that encodes a snoRNA in one of its introns. The processed SNHG15 is overexpressed in CRC tumors and its expression is highly correlated with poor survival of patients. Interestingly, SNHG15 is more highly expressed in tumors with high levels of MYC expression, while MYC protein binds to two E-box motifs on SNHG15 sequence, indicating that SNHG15 transcription is directly regulated by the oncogene MYC. The depletion of SNHG15 by siRNA or CRISPR-Cas9 inhibits cell proliferation and invasion, decreases colony formation as well as the tumorigenic capacity of CRC cells, whereas its overexpression leads to opposite effects. Gene expression analysis performed upon SNHG15 inhibition showed changes in multiple relevant genes implicated in cancer progression, including MYC, NRAS, BAG3 or ERBB3. Several of these genes are functionally related to AIF, a protein that we found to specifically interact with SNHG15, suggesting that the SNHG15 acts, at least in part, by regulating the activity of AIF. Interestingly, ROS levels, which are directly regulated by AIF, show a significant reduction in SNHG15-depleted cells. Moreover, knockdown of SNHG15 increases the sensitiveness of the cells to 5-FU, while its overexpression renders them more resistant to the chemotherapeutic drug. CONCLUSION: Altogether, these results describe an important role of SNHG15 in promoting colon cancer and mediating drug resistance, suggesting its potential as prognostic marker and target for RNA-based therapies.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Neoplasias Colorrectales/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Femenino , Fluorouracilo/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , ARN Nucleolar Pequeño/genética , Análisis de Secuencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Genome Biol ; 18(1): 202, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29078818

RESUMEN

BACKGROUND: It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. RESULTS: Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. CONCLUSIONS: Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci.


Asunto(s)
Invasividad Neoplásica , ARN Largo no Codificante/química , ARN Largo no Codificante/fisiología , Animales , Secuencia de Bases , Movimiento Celular , Secuencia Conservada , Regulación hacia Abajo , Silenciador del Gen , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...