Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Infirm ; 73(298): 22-23, 2024 Feb.
Artículo en Francés | MEDLINE | ID: mdl-38346825

RESUMEN

Preventing and protecting the population against sexually transmitted infections (STIs) is a key focus of sexual health policies. Currently, there are a number of preventive strategies in place to protect users, particularly those in the lesbian, gay, bisexual, trans, queer and intersex (LGBTI) community, from the risk of contracting STIs. In this article, we will outline the current prevention measures available to help those concerned.


Asunto(s)
Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Femenino , Humanos , Enfermedades de Transmisión Sexual/prevención & control
3.
Nat Commun ; 15(1): 869, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287029

RESUMEN

The endosymbiotic bacteria Wolbachia can invade insect populations by modifying host reproduction through cytoplasmic incompatibility (CI), an effect that results in embryonic lethality when Wolbachia-carrying males mate with Wolbachia-free females. Here we describe a transgenic system for recreating CI in the major arbovirus vector Aedes aegypti using CI factor (cif) genes from wAlbB, a Wolbachia strain currently being deployed to reduce dengue transmission. CI-like sterility is induced when cifA and cifB are co-expressed in testes; this sterility is rescued by maternal cifA expression, thereby reproducing the pattern of Wolbachia-induced CI. Expression of cifB alone is associated with extensive DNA damage and disrupted spermatogenesis. The strength of rescue by maternal cifA expression is dependent on the comparative levels of cifA/cifB expression in males. These findings are consistent with CifB acting as a toxin and CifA as an antitoxin, with CifA attenuating CifB toxicity in both the male germline and in developing embryos. These findings provide important insights into the interactions between cif genes and their mechanism of activity and provide a foundation for the building of a cif gene-based drive system in Ae. aegypti.


Asunto(s)
Aedes , Infertilidad , Wolbachia , Animales , Masculino , Femenino , Mosquitos Vectores/genética , Animales Modificados Genéticamente
4.
Artículo en Inglés | MEDLINE | ID: mdl-37897106

RESUMEN

INTRODUCTION: Sexual health is essential to the overall health. People suffering from severe mental illness (SMI) experience a deterioration in their sexual health. These patients and their caregivers seem unwilling to engage in a dialogue concerning sexual health within the context of mental health care. AIM: The study investigated nurses' and care assistants' beliefs and attitudes regarding the sexual health of people with SMI on the psychiatric care pathway. METHODS: Twenty semi-structured interviews were conducted with nurses and care assistants. Data were subject to a thematic analysis. RESULTS: Three main themes emerged: (1) The formalization of the care approach towards people with a SMI in hospitals; (2) the place given to sexual health in psychiatry units; (3) nurses and care assistants are not equipped to deal with patients' sexual health. DISCUSSION: Caregivers consider that sexual health is a fundamental right and an indicator of good health. They nevertheless believe that the psychiatric hospital remains a place of acute care where sexual health is not considered. IMPLICATION FOR PRACTICE: This research justifies that it is necessary to question the representations of nurses and care assistants before implementing a tailored intervention that integrates the consideration of sexual health into the holistic care of the patient on the psychiatric care pathway.

5.
Sci Rep ; 13(1): 11737, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474590

RESUMEN

Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.


Asunto(s)
Aedes , Virus del Dengue , Wolbachia , Animales , Virus del Dengue/fisiología , Proteoma , Wolbachia/fisiología , Antivirales , Proteómica , Lípidos
6.
Inorg Chem ; 62(19): 7173-7185, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37133506

RESUMEN

Although uranium-cerium dioxides are frequently used as a surrogate material for (U,Pu)O2-δ nuclear fuels, there is currently no reliable data regarding the oxygen stoichiometry and redox speciation of the cations in such samples. In order to fill this gap, this manuscript details a synchrotron study of highly homogeneous (U,Ce)O2±Î´ sintered samples prepared by a wet-chemistry route. HERFD-XANES spectroscopy led to determining accurately the O/M ratios (with M = U + Ce). Under a reducing atmosphere (pO2 ≈ 6 × 10-29 atm at 650 °C), the oxides were found to be close to O/M = 2.00, while the O/M ratio varied with the sintering conditions under argon (pO2 ≈ 3 × 10-6 atm at 650 °C). They globally appeared to be hyperstoichiometric (i.e., O/M > 2.00) with the departure from the dioxide stoichiometry decreasing with both the cerium content in the sample and the sintering temperature. Nevertheless, such a deviation from the ideal O/M = 2.00 ratio was found to generate only moderate structural disorder from EXAFS data at the U-L3 edge as all the samples retained the fluorite-type structure of the UO2 and CeO2 parent compounds. The determination of accurate lattice parameters owing to S-PXRD measurements led to complementing the data reported in the literature by various authors. These data were consistent with an empirical relation linking the unit cell parameter, the chemical composition, and the O/M stoichiometry, showing that the latter can be evaluated simply within a ± 0.02 uncertainty.

7.
Appl Environ Microbiol ; 88(22): e0141222, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36318064

RESUMEN

The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Animales , Humanos , Wolbachia/genética , Mosquitos Vectores , Aedes/microbiología , Genómica
8.
PLoS Genet ; 18(9): e1010406, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121852

RESUMEN

Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host's reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts.


Asunto(s)
Aedes , Wolbachia , Aedes/genética , Animales , Plásmidos/genética , Profagos/genética , Simbiosis/genética , Wolbachia/genética
9.
Front Cell Infect Microbiol ; 12: 902914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909973

RESUMEN

Identification of the main SARS-CoV-2 variants in real time is of interest to control the virus and to rapidly devise appropriate public health responses. The RT-qPCR is currently considered to be the reference method to screen SARS-CoV-2 mutations, but it has some limitations. The multiplexing capability is limited when the number of markers to detect increases. Moreover, the performance of this allele-specific method may be impacted in the presence of new mutations. Herein, we present a proof-of-concept study of a simple molecular assay to detect key SARS-CoV-2 mutations. The innovative features of the assay are the multiplex asymmetric one-step RT-PCR amplification covering different regions of SARS-CoV-2 S gene and the visual detection of mutations on a lateral flow DNA microarray. Three kits (Kit 1: N501Y, E484K; Kit 2: L452R, E484K/Q; Kit 3: K417N, L452R, E484K/Q/A) were developed to match recommendations for surveillance of SARS-CoV-2 variants between January and December 2021. The clinical performance was assessed using RNA extracts from 113 SARS-CoV-2-positive samples with cycle thresholds <30, and results demonstrated that our assay allows specific and sensitive detection of mutations, with a performance comparable to that of RT-qPCR. The VAR-CoV assay detected four SARS-CoV-2 targets and achieved specific and sensitive screening of spike mutations associated with the main variants of concern, with a performance comparable to that of RT-qPCR. With well-defined virus sequences, this assay can be rapidly adapted to other emerging mutations; it is a promising tool for variant surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , SARS-CoV-2/genética
10.
BMC Microbiol ; 22(1): 98, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410125

RESUMEN

BACKGROUND: Some people produce specific body odours that make them more attractive than others to mosquitoes, and consequently are at higher risk of contracting vector-borne diseases. The skin microbiome can break down carbohydrates, fatty acids and peptides on the skin into volatiles that mosquitoes can differentiate. RESULTS: Here, we examined how skin microbiome composition of women differs in relation to level of attractiveness to Anopheles coluzzii mosquitoes, to identify volatiles in body odour and metabolic pathways associated with individuals that tend to be poorly-attractive to mosquitoes. We used behavioural assays to measure attractiveness of participants to An. coluzzii mosquitoes, 16S rRNA amplicon sequencing of the bacteria sampled from the skin and gas chromatography of volatiles in body odour. We found differences in skin microbiome composition between the poorly- and highly-attractive groups, particularly eight Amplicon Sequence Variants (ASVs) belonging to the Proteobacteria, Actinobacteria and Firmicutes phyla. Staphylococcus 2 ASVs are four times as abundant in the highly-attractive compared to poorly-attractive group. Associations were found between these ASVs and volatiles known to be attractive to Anopheles mosquitoes. Propanoic pathways are enriched in the poorly-attractive participants compared to those found to be highly-attractive. CONCLUSIONS: Our findings suggest that variation in attractiveness of people to mosquitoes is related to the composition of the skin microbiota, knowledge that could improve odour-baited traps or other next generation vector control tools.


Asunto(s)
Anopheles , Microbiota , Animales , Bacterias/genética , Bacterias/metabolismo , Femenino , Humanos , Mosquitos Vectores , Odorantes/análisis , ARN Ribosómico 16S/genética
11.
mBio ; 12(6): e0025021, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749528

RESUMEN

Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures. IMPORTANCE In the past decades, dengue incidence has dramatically increased all over the world. An emerging dengue control strategy utilizes Aedes aegypti mosquitoes artificially transinfected with the bacterial symbiont Wolbachia, with the ultimate aim of replacing wild mosquito populations. However, the rearing temperature of mosquito larvae is known to impact on some Wolbachia strains. In this study, we compared the effects of a temperature cycle mimicking natural breeding sites in tropical climates on two Wolbachia strains, currently used for open field trials. When choosing the Wolbachia strain to be used in a dengue control program it is important to consider the effects of environmental temperatures on invasiveness and virus inhibition. These results underline the significance of understanding the impact of environmental factors on released mosquitoes, in order to ensure the most efficient strategy for dengue control.


Asunto(s)
Aedes/microbiología , Larva/crecimiento & desarrollo , Mosquitos Vectores/microbiología , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Dengue/transmisión , Dengue/virología , Virus del Dengue/fisiología , Ecosistema , Femenino , Humanos , Larva/microbiología , Larva/virología , Masculino , Control de Mosquitos , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología , Dinámica Poblacional , Temperatura , Wolbachia/genética
12.
Talanta ; 231: 122378, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965042

RESUMEN

Human immunodeficiency virus (HIV) infection is a chronic disease that can be treated with antiretroviral (ARV) therapy. However, the success of this treatment has been jeopardized by the emergence of HIV infections resistant to ARV drugs. In low-to middle-income countries (LMICs), where transmission of resistant viruses has increased over the past decade, there is an urgent need to improve access to HIV drug resistance testing. Here, we present a proof-of-concept study of a rapid and simple molecular method to detect two major mutations (K103 N, Y181C) conferring resistance to first-line nonnucleoside reverse transcriptase inhibitor regimens. Our near-point-of-care (near-POC) diagnostic test, combining a sequence-specific primer extension and a lateral flow DNA microarray strip, allows visual detection of HIV drug resistance mutations (DRM) in a short turnaround time (4 h 30). The assay has a limit of detection of 100 copies of plasmid DNA and has a higher sensitivity than standard Sanger sequencing. The analytical performance was assessed by use of 16 plasma samples from individuals living with HIV-1 and results demonstrated the specificity and the sensitivity of this approach for multiplex detection of the two DRMs in a single test. Furthermore, this near-POC assay could be easily taylored to detect either new DRMs or DRM of from various HIV clades and might be useful for pre-therapy screening in LMICs with high levels of transmitted drug resistance.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Genotipo , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Mutación , Sistemas de Atención de Punto
13.
Mol Biol Evol ; 38(1): 2-15, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32797213

RESUMEN

Cytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally. This provides a reproductive advantage to infected females, allowing the maternally transmitted symbiont to spread rapidly through host populations. We identified homologs of the genes underlying this phenotype, cifA and cifB, in 52 of 71 new and published Wolbachia genome sequences. They are strongly associated with cytoplasmic incompatibility. There are up to seven copies of the genes in each genome, and phylogenetic analysis shows that Wolbachia frequently acquires new copies due to pervasive horizontal transfer between strains. In many cases, the genes have subsequently acquired loss-of-function mutations to become pseudogenes. As predicted by theory, this tends to occur first in cifB, whose sole function is to modify sperm, and then in cifA, which is required to rescue the cross in females. Although cif genes recombine, recombination is largely restricted to closely related homologs. This is predicted under a model of coevolution between sperm modification and embryonic rescue, where recombination between distantly related pairs of genes would create a self-incompatible strain. Together, these patterns of gene gain, loss, and recombination support evolutionary models of cytoplasmic incompatibility.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Interacciones Huésped-Patógeno/genética , Secuencias Repetitivas de Ácidos Nucleicos , Wolbachia/genética , Animales , Drosophila/microbiología , Drosophila/fisiología , Femenino , Masculino , Espermatozoides/fisiología
14.
Philos Trans R Soc Lond B Biol Sci ; 376(1818): 20190809, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357050

RESUMEN

Aedes aegypti mosquitoes carrying the wAlbB Wolbachia strain show a reduced capacity to transmit dengue virus. wAlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that wAlbB releases can be an effective dengue control strategy, the long-term success depends on wAlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia-host coevolution in the field. Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected wAlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that wAlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti, and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.


Asunto(s)
Aedes , Dengue/prevención & control , Mosquitos Vectores , Control Biológico de Vectores , Wolbachia/genética , Animales , Virus del Dengue/fisiología , Malasia , Replicación Viral
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1818): 20190811, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357061

RESUMEN

Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector-host-parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.


Asunto(s)
Control de Enfermedades Transmisibles/instrumentación , Culicidae/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Humanos , Control de Mosquitos/instrumentación
17.
Mol Ecol ; 29(11): 2063-2079, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32391935

RESUMEN

The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host-symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus-specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell-autonomous, these effects are likely to affect the virus-blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host-symbiont-virus-dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.


Asunto(s)
Factores de Edad , Drosophila , Simbiosis , Virosis , Wolbachia , Animales , Drosophila/genética , Drosophila/microbiología , Drosophila/virología , Genotipo , Simbiosis/genética
18.
Malar J ; 19(1): 27, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941507

RESUMEN

BACKGROUND: Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance. METHODS: A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide. RESULTS: Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin. CONCLUSIONS: The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.


Asunto(s)
Anopheles/clasificación , Resistencia a los Insecticidas , Malaria/transmisión , Mosquitos Vectores/clasificación , Animales , Anopheles/enzimología , Anopheles/genética , Bioensayo/métodos , ADN/aislamiento & purificación , Femenino , Técnicas de Genotipaje , Guinea Bissau , Resistencia a los Insecticidas/genética , Islas , Malaria/prevención & control , Mosquitos Vectores/enzimología , Mosquitos Vectores/genética , Proyectos Piloto , Estaciones del Año , Encuestas y Cuestionarios , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
19.
Proc Biol Sci ; 286(1914): 20192117, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662085

RESUMEN

Wolbachia, a common vertically transmitted symbiont, can protect insects against viral infection and prevent mosquitoes from transmitting viral pathogens. For this reason, Wolbachia-infected mosquitoes are being released to prevent the transmission of dengue and other arboviruses. An important question for the long-term success of these programmes is whether viruses can evolve to escape the antiviral effects of Wolbachia. We have found that Wolbachia altered the outcome of competition between strains of the DCV virus in Drosophila. However, Wolbachia still effectively blocked the virus genotypes that were favoured in the presence of the symbiont. We conclude that Wolbachia did cause an evolutionary response in viruses, but this has little or no impact on the effectiveness of virus blocking.


Asunto(s)
Drosophila/microbiología , Simbiosis , Virus , Wolbachia/fisiología , Aedes , Animales , Culicidae , Drosophila/fisiología , Virosis
20.
PLoS Pathog ; 15(9): e1007936, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31504075

RESUMEN

Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.


Asunto(s)
Profagos/genética , Profagos/patogenicidad , Wolbachia/patogenicidad , Wolbachia/virología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Drosophila/embriología , Drosophila/microbiología , Drosophila/virología , Drosophila melanogaster/embriología , Drosophila melanogaster/microbiología , Drosophila melanogaster/virología , Femenino , Genes Letales , Genes Virales , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Masculino , Profagos/fisiología , Razón de Masculinidad , Simbiosis/genética , Simbiosis/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...