Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(7): 075001, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427892

RESUMEN

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing.

2.
Appl Opt ; 58(16): 4220-4226, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251223

RESUMEN

Volume-phase gratings (VPGs) were fabricated in CdSxSe1-x quantum-dot-doped borosilicate glass at a low repetition rate (800 nm, 140 fs, 1 kHz). The VPGs were designed based on rigorous coupled wave analysis simulations. Results indicate that the inscribed thickness (L) is the key parameter to maximize the diffraction efficiency at order 1. Microscope images of the cross sections and diffraction efficiency measurements were taken in order to characterize the modification of the material at different laser-inscription parameters. A maximum VPG diffraction efficiency of 67% (at order 1) was achieved. Also, a refractive index change of Δn=2.25·10-3 is estimated from these VPG diffraction efficiency measurements. The measurements regarding polarization-insensitive diffraction efficiency showed that the birefringence produced in the substrate is negligible.

3.
Sci Rep ; 8(1): 17470, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30478298

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 8(1): 14262, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250257

RESUMEN

We demonstrate a rapid, accurate, and convenient method for tailoring the optical properties of diamond surfaces by employing laser induced periodic surface structuring (LIPSSs). The characteristics of the fabricated photonic surfaces were adjusted by tuning the laser wavelength, number of impinging pulses, angle of incidence and polarization state. Using Finite Difference Time Domain (FDTD) modeling, the optical transmissivity and bandwidth was calculated for each fabricated LIPSSs morphology. The highest transmission of ~99.5% was obtained in the near-IR for LIPSSs structures with aspect ratios of the order of ~0.65. The present technique enabled us to identify the main laser parameters involved in the machining process, and to control it with a high degree of accuracy in terms of structure periodicity, morphology and aspect ratio. We also demonstrate and study the conditions for fabricating spatially coherent nanostructures over large areas maintaining a high degree of nanostructure repeatability and optical performance. While our experimental demonstrations have been mainly focused on diamond anti-reflection coatings and gratings, the technique can be easily extended to other materials and applications, such as integrated photonic devices, high power diamond optics, or the construction of photonic surfaces with tailored characteristics in general.

5.
Sci Rep ; 6: 36296, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805063

RESUMEN

The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.


Asunto(s)
Movimiento Celular/fisiología , Rayos Láser , Nanoestructuras/química , Acero Inoxidable/química , Adhesión Celular/fisiología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Prótesis e Implantes , Propiedades de Superficie
6.
Opt Express ; 23(20): 26683-8, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480181

RESUMEN

Ultrafast laser inscription of volume phase gratings with low index contrast and self-images with visibility of 0.96 is demonstrated. It is also demonstrated that phase differences of π/2 for visible light are achievable with only one layer of structures induced in bulk borosilicate glass by direct laser writing. The fabrication method avoids the stitching of several layers of structures and significantly reduces the time of process. The increment of visibility with the induced phase difference is proved and results are compared with the expected for planar phase gratings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...