Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 12(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295077

RESUMEN

Stemness in sarcomas is coordinated by the expression of pluripotency factors, like SOX2, in cancer stem cells (CSC). The role of SOX2 in tumor initiation and progression has been well characterized in osteosarcoma. However, the pro-tumorigenic features of SOX2 have been scarcely investigated in other sarcoma subtypes. Here, we show that SOX2 depletion dramatically reduced the ability of undifferentiated pleomorphic sarcoma (UPS) cells to form tumorspheres and to initiate tumor growth. Conversely, SOX2 overexpression resulted in increased in vivo tumorigenicity. Moreover, using a reporter system (SORE6) which allows to monitor viable cells expressing SOX2 and/or OCT4, we found that SORE6+ cells were significantly more tumorigenic than the SORE6- subpopulation. In agreement with this findings, SOX2 expression in sarcoma patients was associated to tumor grade, differentiation, invasive potential and lower patient survival. Finally, we studied the effect of a panel of anti-tumor drugs on the SORE6+ cells of the UPS model and patient-derived chondrosarcoma lines. We found that the mithramycin analogue EC-8042 was the most efficient in reducing SORE6+ cells in vitro and in vivo. Overall, this study demonstrates that SOX2 is a pro-tumorigenic factor with prognostic potential in sarcoma. Moreover, SORE6 transcriptional activity is a bona fide CSC marker in sarcoma and constitutes an excellent biomarker for evaluating the efficacy of anti-tumor treatments on CSC subpopulations.

2.
J Clin Med ; 8(4)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987403

RESUMEN

For the cancer genomics era, there is a need for clinically annotated close-to-patient cell lines suitable to investigate altered pathways and serve as high-throughput drug-screening platforms. This is particularly important for drug-resistant tumors like chondrosarcoma which has few models available. Here we established and characterized new cell lines derived from two secondary (CDS06 and CDS11) and one dedifferentiated (CDS-17) chondrosarcomas as well as another line derived from a CDS-17-generated xenograft (T-CDS17). These lines displayed cancer stem cell-related and invasive features and were able to initiate subcutaneous and/or orthotopic animal models. Different mutations in Isocitrate Dehydrogenase-1 (IDH1), Isocitrate Dehydrogenase-2 (IDH2), and Tumor Supressor P53 (TP53) and deletion of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) were detected both in cell lines and tumor samples. In addition, other mutations in TP53 and the amplification of Mouse Double Minute 2 homolog (MDM2) arose during cell culture in CDS17 cells. Whole exome sequencing analysis of CDS17, T-CDS17, and matched patient samples confirmed that cell lines kept the most relevant mutations of the tumor, uncovered new mutations and revealed structural variants that emerged during in vitro/in vivo growth. Altogether, this work expanded the panel of clinically and genetically-annotated chondrosarcoma lines amenable for in vivo studies and cancer stem cell (CSC) characterization. Moreover, it provided clues of the genetic drift of chondrosarcoma cells during the adaptation to grow conditions.

3.
Neoplasia ; 20(1): 44-56, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190494

RESUMEN

Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína FUS de Unión a ARN/genética , Transducción de Señal , Factor de Transcripción CHOP/genética , Quinasas Asociadas a rho/metabolismo , Familia-src Quinasas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Liposarcoma Mixoide/patología , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , ARN Interferente Pequeño/genética , Proteína FUS de Unión a ARN/metabolismo , Factor de Transcripción CHOP/metabolismo
4.
Neoplasia ; 19(6): 460-470, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28494349

RESUMEN

Trabectedin has been approved for second-line treatment of soft tissue sarcomas. However, its efficacy to target sarcoma initiating cells has not been addressed yet. Here, we used pioneer models of myxoid/round cell liposarcoma (MRCLS) and undifferentiated pleomorphic sarcoma (UPS) developed from transformed human mesenchymal stromal/stem cells (MSCs) to evaluate the effect of trabectedin in the cell type responsible for initiating sarcomagenesis and their derived cancer stem cells (CSC) subpopulations. We found that low nanomolar concentrations of trabectedin efficiently inhibited the growth of sarcoma-initiating cells, induced cell cycle arrest, DNA damage and apoptosis. Interestingly, trabectedin treatment repressed the expression of multiple genes responsible for the development of the CSC phenotype, including pluripotency factors, CSC markers and related signaling pathways. Accordingly, trabectedin induced apoptosis and reduced the survival of CSC-enriched tumorsphere cultures with the same efficiency that inhibits the growth of bulk tumor population. In vivo, trabectedin significantly reduced the mitotic index of MRCLS xenografts and inhibited tumor growth at a similar extent to that observed in doxorubicin-treated tumors. Combination of trabectedin with campthotecin (CPT), a chemotherapeutic drug that shows a robust anti-tumor activity when combined with alkylating agents, resulted in a very strong synergistic inhibition of tumor cell growth and highly increased DNA damage and apoptosis induction. Importantly, the enhanced anti-tumor activity of this combination was also observed in CSC subpopulations. These data suggest that trabectedin and CPT combination may constitute a novel strategy to effectively target both the cell-of-origin and CSC subpopulations in sarcoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/administración & dosificación , Dioxoles/administración & dosificación , Liposarcoma Mixoide/tratamiento farmacológico , Liposarcoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Tetrahidroisoquinolinas/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Liposarcoma/patología , Liposarcoma Mixoide/patología , Ratones , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Trabectedina , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Stem Cells Int ; 2016: 3631764, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366153

RESUMEN

Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.

6.
Sci Rep ; 6: 27878, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27292183

RESUMEN

Tumors evolve from initial tumorigenic events into increasingly aggressive behaviors in a process usually driven by subpopulations of cancer stem cells (CSCs). Mesenchymal stromal/stem cells (MSCs) may act as the cell-of-origin for sarcomas, and CSCs that present MSC features have been identified in sarcomas due to their ability to grow as self-renewed floating spheres (tumorspheres). Accordingly, we previously developed sarcoma models using human MSCs transformed with relevant oncogenic events. To study the evolution/emergence of CSC subpopulations during tumor progression, we compared the tumorigenic properties of bulk adherent cultures and tumorsphere-forming subpopulations both in the sarcoma cell-of-origin models (transformed MSCs) and in their corresponding tumor xenograft-derived cells. Tumor formation assays showed that the tumorsphere cultures from xenograft-derived cells, but not from the cell-of-origin models, were enriched in CSCs, providing evidence of the emergence of bona fide CSCs subpopulations during tumor progression. Relevant CSC-related factors, such as ALDH1 and SOX2, were increasingly upregulated in CSCs during tumor progression, and importantly, the increased levels and activity of ALDH1 in these subpopulations were associated with enhanced tumorigenicity. In addition to being a CSC marker, our findings indicate that ALDH1 could also be useful for tracking the malignant potential of CSC subpopulations during sarcoma evolution.


Asunto(s)
Isoenzimas/metabolismo , Células Madre Neoplásicas/metabolismo , Retinal-Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Línea Celular Tumoral , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/trasplante , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Retinal-Deshidrogenasa/antagonistas & inhibidores , Retinal-Deshidrogenasa/genética , Factores de Transcripción SOXB1/metabolismo , Sarcoma/metabolismo , Sarcoma/patología , Imagen de Lapso de Tiempo , Trasplante Heterólogo
7.
Oncotarget ; 7(21): 30935-50, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27105533

RESUMEN

Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Plicamicina/análogos & derivados , Sarcoma Experimental/tratamiento farmacológico , Factor de Transcripción Sp1/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacocinética , Resistencia a Antineoplásicos , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones Endogámicos NOD , Ratones SCID , Subunidad p50 de NF-kappa B/metabolismo , Plicamicina/farmacocinética , Plicamicina/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Notch1/metabolismo , Factores de Transcripción SOXB1/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Mol Life Sci ; 72(16): 3097-113, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25935149

RESUMEN

The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.


Asunto(s)
Huesos/fisiología , Microambiente Celular/fisiología , Homeostasis/fisiología , Modelos Biológicos , Metástasis de la Neoplasia/fisiopatología , Osteosarcoma/fisiopatología , Transducción de Señal , Humanos , Transducción de Señal/fisiología
9.
Stem Cells ; 32(5): 1136-48, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24446210

RESUMEN

The cellular microenvironment plays a relevant role in cancer development. We have reported that mesenchymal stromal/stem cells (MSCs) deficient for p53 alone or together with RB (p53(-/-)RB(-/-)) originate leiomyosarcoma after subcutaneous (s.c.) inoculation. Here, we show that intrabone or periosteal inoculation of p53(-/-) or p53(-/-)RB(-/-) bone marrow- or adipose tissue-derived MSCs originated metastatic osteoblastic osteosarcoma (OS). To assess the contribution of bone environment factors to OS development, we analyzed the effect of the osteoinductive factor bone morphogenetic protein-2 (BMP-2) and calcified substrates on p53(-/-)RB(-/-) MSCs. We show that BMP-2 upregulates the expression of osteogenic markers in a WNT signaling-dependent manner. In addition, the s.c. coinfusion of p53(-/-)RB(-/-) MSCs together with BMP-2 resulted in appearance of tumoral osteoid areas. Likewise, when p53(-/-)RB(-/-) MSCs were inoculated embedded in a calcified ceramic scaffold composed of hydroxyapatite and tricalciumphosphate (HA/TCP), tumoral bone formation was observed in the surroundings of the HA/TCP scaffold. Moreover, the addition of BMP-2 to the ceramic/MSC implants further increased the tumoral osteoid matrix. Together, these data indicate that bone microenvironment signals are essential to drive OS development.


Asunto(s)
Neoplasias Óseas/patología , Huesos/patología , Microambiente Celular , Células Madre Mesenquimatosas/patología , Osteosarcoma/patología , Animales , Western Blotting , Proteína Morfogenética Ósea 2/farmacología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Fosfatos de Calcio/química , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Cerámica/química , Durapatita/química , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteosarcoma/genética , Osteosarcoma/metabolismo , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Andamios del Tejido/química , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...