Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Yeast ; 39(11-12): 617-628, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36285422

RESUMEN

Quercetin is a flavonol ubiquitously present in fruits and vegetables that shows a potential therapeutic use in non-transmissible chronic diseases, such as cancer and diabetes. Although this phytochemical has shown promising health benefits, the molecular mechanism behind this compound is still unclear. Interestingly, quercetin displays toxic properties against phylogenetically distant organisms such as bacteria and eukaryotic cells, suggesting that its molecular target resides on a highly conserved pathway. The cytotoxicity of quercetin could be explained by energy depletion occasioned by mitochondrial respiration impairment and its concomitant pleiotropic effect. Thereby, the molecular basis of quercetin cytotoxicity could shed light on potential molecular mechanisms associated with its health benefits. Nonetheless, the evidence supporting this hypothesis is still lacking. Thus, this study aimed to evaluate whether quercetin supplementation affects mitochondrial respiration and whether this is related to quercetin cytotoxicity. Saccharomyces cerevisiae was used as a study model to assess the effect of quercetin on energetic metabolism. Herein, we provide evidence that quercetin supplementation: (1) decreased the exponential growth of S. cerevisiae in a glucose-dependent manner; (2) affected diauxic growth in a similar way to antimycin A (complex III inhibitor of electron transport chain); (3) suppressed the growth of S. cerevisiae cultures supplemented with non-fermentable carbon sources (glycerol and lactate); (4) promoted a glucose-dependent inhibition of the basal, maximal, and ATP-linked respiration; (5) diminished complex II and IV activities. Altogether, these data indicate that quercetin disturbs mitochondrial respiration between the ubiquinone pool and cytochrome c, and this phenotype is associated with its cytotoxic properties.


Asunto(s)
Quercetina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Mitocondrias/metabolismo , Glucosa/metabolismo , Respiración
2.
Fungal Genet Biol ; 161: 103701, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526810

RESUMEN

The Crabtree effect molecular regulation comprehension could help to improve ethanol production with biotechnological purposes and a better understanding of cancer etiology due to its similarity with the Warburg effect. Snf1p/Hxk2p/Mig1p pathway has been linked with the transcriptional regulation of the hexose transporters and phenotypes associated with the Crabtree effect. Nevertheless, direct evidence linking the genetic control of the hexose transporters with modulation of the Crabtree effect phenotypes by the Snf1p/Hxk2p/Mig1p pathway is still lacking. In this sense, we provide evidence that SNF1 and HXK2 genes deletion affects exponential growth, mitochondrial respiration, and transcript levels of hexose transporters in a glucose-dependent manner. The Vmax of the hexose transporters with the high transcript levels was correlated positively with the exponential growth and negatively with the mitochondrial respiration. HXT2 gene transcript levels were the most affected by the deletion of the SNF1/HXK2/MIG1 pathway. Deleting the orthologous genes SNF1 and HXK2 in Kluyveromyces marxianus (Crabtree negative yeast) has an opposite effect compared to Saccharomyces cerevisiae in growth and mitochondrial respiration. Overall, these results indicate that the SNF1/HXK2/MIG1 pathway regulates transcript levels of the hexose transporters, which shows an association with the exponential growth and mitochondrial respiration in a glucose-dependent manner.


Asunto(s)
Hexoquinasa , Proteínas Serina-Treonina Quinasas , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Respiración , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Yeast ; 36(8): 487-494, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31074533

RESUMEN

The switch between mitochondrial respiration and fermentation as the main ATP production pathway through an increase glycolytic flux is known as the Crabtree effect. The elucidation of the molecular mechanism of the Crabtree effect may have important applications in ethanol production and lay the groundwork for the Warburg effect, which is essential in the molecular etiology of cancer. A key piece in this mechanism could be Snf1p, which is a protein that participates in the nutritional response including glucose metabolism. Thus, this work aimed to recognize the role of the SNF1 gene on the glycolytic flux and mitochondrial respiration through the glucose concentration variation to gain insights about its relationship with the Crabtree effect. Herein, we found that SNF1 deletion in Saccharomyces cerevisiae cells grown at 1% glucose, decreased glycolytic flux, increased NAD(P)H concentration, enhanced HXK2 gene transcription, and decreased mitochondrial respiration. Meanwhile, the same deletion increased the mitochondrial respiration of cells grown at 10% glucose. Altogether, these findings indicate that SNF1 is important to respond to glucose concentration variation and is involved in the switch between mitochondrial respiration and fermentation.


Asunto(s)
Glucosa/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentación , Glucosa/análisis , Glucólisis , Hexoquinasa/genética , NAD/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA