Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2813: 219-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888781

RESUMEN

Bacteriophages (phages) are viruses that infect bacteria and are the most abundant biological entity on the planet. Phages have gained popularity as an alternative to antibiotics due to their specificity and ability to efficiently lyse antimicrobial resistant bacterial pathogens. Before using phages, they must be isolated from the environment and tested to ensure purity and lytic ability against various hosts. This protocol walks through the entire multi-day procedure of enriching and processing raw environmental samples (seawater, primary sludge, and soil), testing for lytic activity, selecting and picking potential phage plaques, verifying phage purity, and finally, propagation (liquid and solid) of phages to obtain high-titer crude phage lysates.


Asunto(s)
Bacteriófagos , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacterias/virología , Bacterias/efectos de los fármacos , Aguas del Alcantarillado/virología , Microbiología del Suelo
2.
Microlife ; 5: uqae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545601

RESUMEN

Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.

3.
Crit Rev Food Sci Nutr ; 63(18): 3097-3129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34609270

RESUMEN

The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Intoxicación Alimentaria por Salmonella , Animales , Humanos , Aves de Corral , Salmonella , Bacterias , Antibacterianos
4.
Viruses ; 13(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834927

RESUMEN

Bacteriophages are viruses that infect bacteria and are present in niches where bacteria thrive. In recent years, the suggested application areas of lytic bacteriophage have been expanded to include therapy, biocontrol, detection, sanitation, and remediation. However, phage application is constrained by the phage's host range-the range of bacterial hosts sensitive to the phage and the degree of infection. Even though phage isolation and enrichment techniques are straightforward protocols, the correlation between the enrichment technique and host range profile has not been evaluated. Agar-based methods such as spotting assay and efficiency of plaquing (EOP) are the most used methods to determine the phage host range. These methods, aside from being labor intensive, can lead to subjective and incomplete results as they rely on qualitative observations of the lysis/plaques, do not reflect the lytic activity in liquid culture, and can overestimate the host range. In this study, phages against three bacterial genera were isolated using three different enrichment methods. Host range profiles of the isolated phages were quantitatively determined using a high throughput turbidimetric protocol and the data were analyzed with an accessible analytic tool "PHIDA". Using this tool, the host ranges of 9 Listeria, 14 Salmonella, and 20 Pseudomonas phages isolated with different enrichment methods were quantitatively compared. A high variability in the host range index (HRi) ranging from 0.86-0.63, 0.07-0.24, and 0.00-0.67 for Listeria, Salmonella, and Pseudomonas phages, respectively, was observed. Overall, no direct correlation was found between the phage host range breadth and the enrichment method in any of the three target bacterial genera. The high throughput method and analytics tool developed in this study can be easily adapted to any phage study and can provide a consensus for phage host range determination.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Ciencia de los Datos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Especificidad del Huésped , Listeria/virología , Pseudomonas/virología , Salmonella/virología , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA