Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brain Commun ; 6(3): fcae141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712319

RESUMEN

Multiple system atrophy is a neurodegenerative disease with α-synuclein pathology predominating in the striatonigral and olivopontocerebellar systems. Mixed pathologies are considered to be of low frequency and mostly comprise primary age-related tauopathy or low levels of Alzheimer's disease-related neuropathologic change. Therefore, the concomitant presence of different misfolded proteins in the same brain region is less likely in multiple system atrophy. During the neuropathological evaluation of 21 consecutive multiple system atrophy cases, we identified four cases exhibiting an unusual discrepancy between high Thal amyloid-ß phase and low transentorhinal Braak neurofibrillary tangle stage. We mapped α-synuclein pathology, measured the size and number of glial cytoplasmic inclusions and compared the amyloid-ß peptides between multiple system atrophy and Alzheimer's disease. In addition, we performed α-synuclein seeding assay from the affected putamen samples. We performed genetic testing for APOE, MAPT, PSEN1, PSEN2 and APP. We refer to the four multiple system atrophy cases with discrepancy between amyloid-ß and tau pathology as 'amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy' to distinguish these from multiple system atrophy with primary age-related tauopathy or multiple system atrophy with typical Alzheimer's disease neuropathologic change. As most multiple system atrophy cases with mixed pathologies reported in the literature, these cases did not show a peculiar clinical or MRI profile. Three amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy cases were available for genetic testing, and all carried the APOE ɛ4 allele. The extent and severity of neuronal loss and α-synuclein pathology were not different compared with typical multiple system atrophy cases. Analysis of amyloid-ß peptides revealed more premature amyloid-ß plaques in amyloid-ß-predominant Alzheimer's disease neuropathologic change-multiple system atrophy compared with Alzheimer's disease. α-Synuclein seeding amplification assay showed differences in the kinetics in two cases. This study highlights a rare mixed pathology variant of multiple system atrophy in which there is an anatomical meeting point of amyloid-ß and α-synuclein, i.e. the striatum or cerebellum. Since biomarkers are entering clinical practice, these cases will be recognized, and the clinicians have to be informed that the prognosis is not necessarily different than in pure multiple system atrophy cases but that the effect of potential α-synuclein-based therapies might be influenced by the co-presence of amyloid-ß in regions where α-synuclein also aggregates. We propose that mixed pathologies should be interpreted not only based on differences in the clinical phenotype but also on whether protein depositions regionally overlap, potentially leading to a different response to α-synuclein-targeted therapies.

2.
Neurobiol Dis ; 197: 106535, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761956

RESUMEN

BACKGROUND: Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS: Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS: MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS: Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.

3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473923

RESUMEN

Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.


Asunto(s)
Enfermedad por Cuerpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Metabolismo de los Lípidos , Ubiquitinas/metabolismo
4.
Brain Pathol ; 34(2): e13238, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38214380

RESUMEN

With the new era of disease-modifying therapies for neurodegenerative diseases, a novel approach for the molecular classification of neurodegenerative diseases is needed. In this research letter, there is a summary of the advances made in Alzheimer's disease, Lewy body disorders, and progressive supranuclear palsy toward this classification.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Humanos , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Fenotipo
5.
Brain ; 147(4): 1399-1411, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972275

RESUMEN

The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the PNS are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases [progressive supranuclear palsy (PSP), n = 15; Alzheimer's disease (AD), n = 18; chronic traumatic encephalopathy (CTE), n = 5; and corticobasal degeneration (CBD), n = 6; Pick's disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy (LNT), n = 1] using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88%); IX/X: 10/11 (91%); and XII: 6/6 (100%); anterior spinal roots: 10/10 (100%). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE and Pick's disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Enfermedad de Pick/patología , Enfermedad de Alzheimer/patología , Tauopatías/patología , Nervios Espinales , Biomarcadores
7.
Acta Neuropathol Commun ; 11(1): 185, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996943

RESUMEN

Misfolded α-synuclein (α-syn) is believed to contribute to neurodegeneration in Lewy body disease (LBD) based on considerable evidence including a gene-dosage effect observed in relation to point mutations and multiplication of SNCA in familial Parkinson's disease. A contradictory concept proposes early loss of the physiological α-syn as the major driver of neurodegeneration. There is a paucity of data on SNCA transcripts in various α-syn immunoreactive cytopathologies. Here, the total cell body, nuclear, and cytoplasmic area density of SNCA transcripts in neurons without and with various α-syn immunoreactive cytopathologies in the substantia nigra and amygdala in autopsy cases of LBD (n = 5) were evaluated using RNAscope combined with immunofluorescence for disease-associated α-syn. Single-nucleus RNA sequencing was performed to elucidate cell-type specific SNCA expression in non-diseased frontal cortex (n = 3). SNCA transcripts were observed in the neuronal nucleus and cytoplasm in neurons without α-syn, those containing punctate α-syn immunoreactivity, irregular-shaped compact inclusion, and brainstem-type and cortical-type LBs. However, SNCA transcripts were only rarely found in the α-syn immunoreactive LB areas. The total cell body SNCA transcript area densities in neurons with punctate α-syn immunoreactivity were preserved but were significantly reduced in neurons with compact α-syn inclusions both in the substantia nigra and amygdala. This reduction was also observed in the cytoplasm but not in the nucleus. Only single SNCA transcripts were detected in astrocytes with or without disease-associated α-syn immunoreactivity in the amygdala. Single-nucleus RNA sequencing revealed that excitatory and inhibitory neurons, oligodendrocyte progenitor cells, oligodendrocytes, and homeostatic microglia expressed SNCA transcripts, while expression was largely absent in astrocytes and microglia. The preserved cellular SNCA expression in the more abundant non-Lewy body type α-syn cytopathologies might provide a pool for local protein production that can aggregate and serve as a seed for misfolded α-syn. Successful segregation of disease-associated α-syn is associated with the exhaustion of SNCA production in the terminal cytopathology, the Lewy body. Our observations inform therapy development focusing on targeting SNCA transcription in LBD.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología , Enfermedad por Cuerpos de Lewy/patología , Neuronas/metabolismo
8.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808843

RESUMEN

Progressive Supranuclear palsy (PSP) is a 4-repeat (4-R) tauopathy. We hypothesized that the molecular diversity of tau could explain the heterogeneity seen in PSP disease progression. To test this hypothesis, we performed an extensive biochemical characterisation of the high molecular weight tau species (HMW-Tau) in 20 different brain regions of 25 PSP patients. We found a correlation between the HMW-Tau species and tau seeding capacity in the primary motor cortex, where we confirmed that an elevated 4R-Tau seeding activity correlates with a shorter disease duration. To identify factors that contribute to these differences, we performed proteomic and spatial transcriptomic analysis that revealed key mechanistic pathways, in particular those involving the immune system, that defined patients demonstrating high and low tau seeding capacity. These observations suggest that differences in the tau seeding activity may contribute to the considerable heterogeneity seen in disease progression of patients suffering from PSP.

9.
Mov Disord ; 38(11): 2125-2131, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792643

RESUMEN

BACKGROUND: Misfolded α-synuclein in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) can be detected using the real-time quaking-induced conversion (RT-QuIC) technique in cerebrospinal fluid (CSF). OBJECTIVES: The objectives are (1) to examine misfolded CSF α-synuclein incidence, and (2) to compare clinical presentation, sports history, brain volumes, and RT-QuIC α-synuclein positivity in former athletes. METHODS: Thirty former athletes with magnetic resonance imaging, neuropsychological testing, and CSF analyzed for phosphorylated tau 181 (p-tau), total tau (t-tau), amyloid-ß 42 (Aß42), and neurofilament light chain (NfL). CSF α-synuclein was detected using RT-QuIC. RESULTS: Six (20%) former athletes were α-synuclein positive. α-Synuclein positive athletes were similar to α-synuclein negative athletes on demographics, sports history, clinical features, CSF p-tau, t-tau, Aß42, and NfL; however, had lower grey matter volumes in the right inferior orbitofrontal, right anterior insula and right olfactory cortices. CONCLUSIONS: α-Synuclein RT-QuIC analysis of CSF may be useful as a prodromal biofluid marker of PD and DLB. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Atletas
10.
Biomolecules ; 13(8)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37627328

RESUMEN

The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.


Asunto(s)
Líquidos Corporales , Enfermedades del Sistema Nervioso , Sinucleinopatías , Humanos , alfa-Sinucleína , Enfermedades del Sistema Nervioso/diagnóstico , Sinucleinopatías/diagnóstico , Biopsia
11.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511361

RESUMEN

Limited comparative data exist on the molecular spectrum of amyloid-beta (Aß) and tau deposition in individuals with Down syndrome (DS) and sporadic Alzheimer's disease (sAD). We assessed Aß and tau deposition severity in the temporal lobe and cerebellum of ten DS and ten sAD cases. Immunohistochemistry was performed using antibodies against eight different Aß epitopes (6F/3D, Aß38, Aß39, Aß40, Aß42, Aß43, pyroglutamate Aß at third glutamic acid (AßNp3E), phosphorylated- (p-)Aß at 8th serine (AßpSer8)), and six different pathological tau epitopes (p-Ser202/Thr205, p-Thr231, p-Ser396, Alz50, MC1, GT38). Findings were evaluated semi-quantitatively and quantitatively using digital pathology. DS cases had significantly higher neocortical parenchymal deposition (Aß38, Aß42, and AßpSer8), and cerebellar parenchymal deposition (Aß40, Aß42, AßNp3E, and AßpSer8) than sAD cases. Furthermore, DS cases had a significantly larger mean plaque size (6F/3D, Aß42, AßNp3E) in the temporal lobe, and significantly greater deposition of cerebral and cerebellar Aß42 than sAD cases in the quantitative analysis. Western blotting corroborated these findings. Regarding tau pathology, DS cases had significantly more severe cerebral tau deposition than sAD cases, especially in the white matter (p-Ser202/Thr205, p-Thr231, Alz50, and MC1). Greater total tau deposition in the white matter (p-Ser202/Thr205, p-Thr231, and Alz50) of DS cases was confirmed by quantitative analysis. Our data suggest that the Aß and tau molecular signatures in DS are distinct from those in sAD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Síndrome de Down , Proteínas tau , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Cerebelo/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Fragmentos de Péptidos , Proteínas tau/genética , Proteínas tau/metabolismo , Lóbulo Temporal/metabolismo
12.
Biomolecules ; 13(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37371515

RESUMEN

Recent studies have been able to detect α-synuclein (αSyn) seeding in formaldehyde-fixed paraffin-embedded (FFPE) tissues from patients with synucleinopathies using seed amplification assays (SAAs), but with relatively low sensitivity due to limited protein extraction efficiency. With the aim of introducing an alternative option to frozen tissues, we developed a streamlined protein extraction protocol for evaluating disease-specific seeding in FFPE human brain. We evaluated the protein extraction efficiency of different tissue preparations, deparaffinizations, and protein extraction buffers using formaldehyde-fixed and FFPE tissue of a single Lewy body disease (LBD) subject. Alternatively, we incorporated heat-induced antigen retrieval and dissociation using a commercially available kit. Our novel protein extraction protocol has been optimized to work with 10 sections of 4.5-µm-thickness or 2-mm-diameter micro-punch of FFPE tissue that can be used to seed SAAs. We demonstrated that extracted proteins from FFPE still preserve seeding potential and further show disease-specific seeding in LBD and multiple system atrophy. To the best of our knowledge, our study is the first to recapitulate disease-specific αSyn seeding behaviour in FFPE human brain. Our findings open new perspectives in re-evaluating archived human brain tissue, extending the disease-specific seeding assays to larger cohorts to facilitate molecular subtyping of synucleinopathies.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Parafina , Adhesión en Parafina/métodos , Formaldehído , Encéfalo/metabolismo
13.
Acta Neuropathol ; 146(3): 395-414, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354322

RESUMEN

Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.


Asunto(s)
Parálisis Supranuclear Progresiva , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Parálisis Supranuclear Progresiva/patología , Citología , Neuroglía/patología , Neuronas/patología , Expresión Génica
14.
ACS Chem Neurosci ; 14(11): 2074-2088, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37236204

RESUMEN

c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Trastornos del Conocimiento/metabolismo , Disfunción Cognitiva/metabolismo , Cognición , Proteínas tau/metabolismo
15.
Acta Neuropathol Commun ; 11(1): 72, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138318

RESUMEN

Unique strains of α-synuclein aggregates have been postulated to underlie the spectrum of clinical and pathological presentations seen across the synucleinopathies. Whereas multiple system atrophy (MSA) is associated with a predominance of oligodendroglial α-synuclein inclusions, α-synuclein aggregates in Parkinson's disease (PD) preferentially accumulate in neurons. The G51D mutation in the SNCA gene encoding α-synuclein causes an aggressive, early-onset form of PD that exhibits clinical and neuropathological traits reminiscent of both PD and MSA. To assess the strain characteristics of G51D PD α-synuclein aggregates, we performed propagation studies in M83 transgenic mice by intracerebrally inoculating patient brain extracts. The properties of the induced α-synuclein aggregates in the brains of injected mice were examined using immunohistochemistry, a conformational stability assay, and by performing α-synuclein seed amplification assays. Unlike MSA-injected mice, which developed a progressive motor phenotype, G51D PD-inoculated animals remained free of overt neurological illness for up to 18 months post-inoculation. However, a subclinical synucleinopathy was present in G51D PD-inoculated mice, characterized by the accumulation of α-synuclein aggregates in restricted regions of the brain. The induced α-synuclein aggregates in G51D PD-injected mice exhibited distinct properties in a seed amplification assay and were much more stable than those present in mice injected with MSA extract, which mirrored the differences observed between human MSA and G51D PD brain samples. These results suggest that the G51D SNCA mutation specifies the formation of a slowly propagating α-synuclein strain that more closely resembles α-synuclein aggregates associated with PD than MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/química , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Mutación/genética , Sinucleinopatías/genética , Ratones Transgénicos
16.
ACS Chem Neurosci ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976903

RESUMEN

c-Jun N-terminal kinase 3 (JNK3) is suggested to play a key role in neurodegenerative disorders, especially in Alzheimer's disease (AD). However, it remains unclear whether JNK or amyloid ß (Aß) appears first in the disease onset. Postmortem brain tissues from four dementia subtypes of patients (frontotemporal dementia, Lewy body dementia, vascular dementia, and AD) were used to measure activated JNK (pJNK) and Aß levels. pJNK expression is significantly increased in AD; however, similar pJNK expression was found in other dementias. Furthermore, there was a significant correlation, co-localization, and direct interaction between pJNK expression and Aß levels in AD. Significant increased levels of pJNK were also found in Tg2576 mice, a model of AD. In this line, Aß42 intracerebroventricular injection in wild-type mice was able to induce a significant elevation of pJNK levels. JNK3 overexpression, achieved by intrahippocampal injection of an adeno-associated viral vector expressing this protein, was enough to induce cognitive deficiencies and precipitate Tau aberrant misfolding in Tg2576 mice without accelerating amyloid pathology. JNK3 overexpression may therefore be triggered by increased Aß. The latter, together with subsequent involvement of Tau pathology, may be underlying cognitive alterations in early stages of AD.

17.
Ann Neurol ; 93(3): 431-445, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36309960

RESUMEN

OBJECTIVE: Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains. METHODS: In brain regions vulnerable to PSP pathology (GP, SN, and putamen), we visualized iron deposition in tau-affected and unaffected neurons, astroglia, oligodendrocytes, and microglia, using a combination of iron staining with immunolabelling. To further explore molecular pathways underlying our observations, we examined the expression of key iron and oxygen homeostasis mRNA transcripts and proteins. RESULTS: We found astrocytes as the major cell type accumulating iron in the early affected regions of PSP, highly associated with cellular tau pathology. The same regions are affected by dysregulated expression of alpha and beta hemoglobin and neuroglobin showing contrasting patterns. We discovered changes in iron and oxygen homeostasis-related gene expression associated with aging of the brain, and identified dysregulated expression of rare neurodegeneration with brain iron accumulation (NBIA) genes associated with tau pathology to distinguish PSP from the healthy aging brain. INTERPRETATION: We present novel aspects of PSP pathophysiology highlighting an overlap with NBIA pathways. Our findings reveal potential novel targets for therapy development and have implications beyond PSP for other iron-associated neurodegenerative diseases. ANN NEUROL 2023;93:431-445.


Asunto(s)
Hierro , Parálisis Supranuclear Progresiva , Humanos , Hierro/metabolismo , Proteínas tau/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Encéfalo/patología , Oxígeno
18.
Ann Neurol ; 92(6): 985-991, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094107

RESUMEN

This study quantified the occurrence of an underlying synucleinopathy in 50 patients with idiopathic normal pressure hydrocephalus by means of real-time quaking-induced conversion, a highly sensitive and specific technique capable of detecting and amplifying misfolded aggregated forms of α-synuclein in the cerebrospinal fluid. Seven patients were positive and they did not differ from negative cases, except for a more frequent L-dopa responsiveness and gait characterized by a wider base. The two groups did not differ in terms of response rate to tap test or shunt surgery, although step length and gait velocity improved by a lesser extent in positive cases. ANN NEUROL 2022;92:985-991.


Asunto(s)
Hidrocéfalo Normotenso , Sinucleinopatías , Humanos , alfa-Sinucleína/líquido cefalorraquídeo , Hidrocéfalo Normotenso/diagnóstico , Hidrocéfalo Normotenso/cirugía , Marcha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...