Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768969

RESUMEN

Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Terapia Molecular Dirigida/tendencias , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Edición Génica/tendencias , Terapia Genética/tendencias , Humanos , Neuroprotección , Optogenética/tendencias , Medicina Regenerativa/tendencias
3.
Proc Natl Acad Sci U S A ; 115(3): E438-E447, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282322

RESUMEN

Sensory neurons often possess cilia with elaborate membrane structures that are adapted to the sensory modality of the host cell. Mechanisms that target sensory transduction proteins to these specialized membrane domains remain poorly understood. Here, we show that a homolog of the human retinal dystrophy gene Retinal Degeneration 3 (RD3) is a Golgi-associated protein required for efficient trafficking of a sensory receptor, the receptor-type guanylate cyclase GCY-9, to cilia in chemosensory neurons of the nematode Caenorhabditis elegans The trafficking defect caused by mutation of the nematode RD3 homolog is suppressed in vivo by mutation of key components of the retromer complex, which mediates recycling of cargo from endosomes to the Golgi. Our data show that there exists a critical balance in sensory neurons between the rates of anterograde and retrograde trafficking of cargo destined for the sensory cilium and this balance requires molecular specialization at an early stage of the secretory pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Cilios/fisiología , Proteínas del Ojo/metabolismo , Transporte de Proteínas/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas del Ojo/clasificación , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Células Receptoras Sensoriales/fisiología
4.
Curr Biol ; 25(2): 163-174, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25557666

RESUMEN

BACKGROUND: Cellular mechanisms aimed at repairing protein damage and maintaining homeostasis, widely understood to be triggered by the damage itself, have recently been shown to be under cell nonautonomous control in the metazoan C. elegans. The heat shock response (HSR) is one such conserved mechanism, activated by cells upon exposure to proteotoxic conditions such as heat. Previously, we had shown that this conserved cytoprotective response is regulated by the thermosensory neuronal circuitry of C. elegans. Here, we investigate the mechanisms and physiological relevance of neuronal control. RESULTS: By combining optogenetic methods with live visualization of the dynamics of the heat shock transcription factor (HSF1), we show that excitation of the AFD thermosensory neurons is sufficient to activate HSF1 in another cell, even in the absence of temperature increase. Excitation of the AFD thermosensory neurons enhances serotonin release. Serotonin release elicited by direct optogenetic stimulation of serotonergic neurons activates HSF1 and upregulates molecular chaperones through the metabotropic serotonin receptor SER-1. Consequently, excitation of serotonergic neurons alone can suppress protein misfolding in C. elegans peripheral tissue. CONCLUSIONS: These studies imply that thermosensory activity coupled to serotonergic signaling is sufficient to activate the protective HSR prior to frank proteotoxic damage. The ability of neurosensory release of serotonin to control cellular stress responses and activate HSF1 has powerful implications for the treatment of protein conformation diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Serotonina/metabolismo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(7): 2776-81, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550307

RESUMEN

The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (Ts) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above Ts (negative thermotaxis) and performs isothermal tracking near Ts. Under some conditions, the worm migrates up temperature gradients below Ts (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward Ts to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below Ts. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.


Asunto(s)
Caenorhabditis elegans/fisiología , Memoria a Largo Plazo/fisiología , Modelos Neurológicos , Movimiento/fisiología , Neuronas/fisiología , Sensación Térmica/fisiología , Animales , Temperatura
6.
Genes Dev ; 26(19): 2206-21, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23028145

RESUMEN

The chemotrophic factor Netrin can simultaneously instruct different neurodevelopmental programs in individual neurons in vivo. How neurons correctly interpret the Netrin signal and undergo the appropriate neurodevelopmental response is not understood. Here we identify MIG-10 isoforms as critical determinants of individual cellular responses to Netrin. We determined that distinct MIG-10 isoforms, varying only in their N-terminal motifs, can localize to specific subcellular domains and are differentially required for discrete neurodevelopmental processes in vivo. We identified MIG-10B as an isoform uniquely capable of localizing to presynaptic regions and instructing synaptic vesicle clustering in response to Netrin. MIG-10B interacts with Abl-interacting protein-1 (ABI-1)/Abi1, a component of the WAVE complex, to organize the actin cytoskeleton at presynaptic sites and instruct vesicle clustering through SNN-1/Synapsin. We identified a motif in the MIG-10B N-terminal domain that is required for its function and localization to presynaptic sites. With this motif, we engineered a dominant-negative MIG-10B construct that disrupts vesicle clustering and animal thermotaxis behavior when expressed in a single neuron in vivo. Our findings indicate that the unique N-terminal domains confer distinct MIG-10 isoforms with unique capabilities to localize to distinct subcellular compartments, organize the actin cytoskeleton at these sites, and instruct distinct Netrin-dependent neurodevelopmental programs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/genética , Vesículas Sinápticas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/genética , Perfilación de la Expresión Génica , Interneuronas/citología , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Isoformas de Proteínas , Transporte de Proteínas/genética , Vesículas Sinápticas/genética
7.
PLoS One ; 7(3): e34014, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479504

RESUMEN

Many animals possess neurons specialized for the detection of carbon dioxide (CO(2)), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2) is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2)-detection and transforms neurons into CO(2)-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2)-sensing neurons in other phyla.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Dióxido de Carbono/química , Regulación de la Expresión Génica , Guanilato Ciclasa/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/fisiología , Células Receptoras Sensoriales/metabolismo , Alelos , Animales , Conducta Animal , Sitios de Unión , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dióxido de Carbono/metabolismo , Eliminación de Gen , Microscopía Fluorescente/métodos , Mutación , Neuronas/metabolismo , Plásmidos/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/fisiología , Receptores Acoplados a la Guanilato-Ciclasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...