Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077248

RESUMEN

Medulloblastoma is a pediatric brain malignancy that consists of four transcriptional subgroups. Structural and numerical aneuploidy are common in all subgroups, although they are particularly profound in Group 3 and Group 4 medulloblastoma and in a subtype of SHH medulloblastoma termed SHHα. This suggests that chromosomal instability (CIN), the process leading to aneuploidy, is an important player in medulloblastoma pathophysiology. However, it is not known if there is ongoing CIN in medulloblastoma or if CIN affects the developing cerebellum and promotes tumor formation. To investigate this, we performed karyotyping of single medulloblastoma cells and demonstrated the presence of distinct tumor cell clones harboring unique copy number alterations, which is suggestive of ongoing CIN. We also found enrichment for processes related to DNA replication, repair, and mitosis in both SHH medulloblastoma and in the highly proliferative compartment of the presumed tumor cell lineage-of-origin, the latter also being sensitive to genotoxic stress. However, when challenging these tumor cells-of-origin with genetic lesions inducing CIN using transgenic mouse modeling, we found no evidence for large chromosomal aberrations in the cerebellum or for medulloblastoma formation. We therefore conclude that without a background of specific genetic mutations, CIN is not tolerated in the developing cerebellum in vivo and, thus, by itself is not sufficient to initiate medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Aneuploidia , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Cerebelo/metabolismo , Inestabilidad Cromosómica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos
2.
J Cell Sci ; 135(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35535520

RESUMEN

Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Células-Madre Neurales , Animales , Proliferación Celular/fisiología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Ratones , Células-Madre Neurales/metabolismo
3.
PLoS Genet ; 17(11): e1009868, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34752469

RESUMEN

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.


Asunto(s)
Neoplasias Encefálicas/genética , Replicación del ADN/genética , Inestabilidad Genómica , Glioma/genética , Histonas/fisiología , Neoplasias Encefálicas/patología , Niño , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Mitosis/genética
4.
Sci Rep ; 11(1): 16077, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373489

RESUMEN

While there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy.


Asunto(s)
Diferenciación Celular/fisiología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/patología , Fosforilación/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...