Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712125

RESUMEN

The lateral septum (LS) is a midline, subcortical structure, which regulates social behaviors that are frequently impaired in neurodevelopmental disorders including schizophrenia and autism spectrum disorder. Mouse studies have identified neuronal populations within the LS that express a variety of molecular markers, including vasopressin receptor, oxytocin receptor, and corticotropin releasing hormone receptor, that control specific facets of social behavior. Despite its critical role in the regulation of social behavior and notable gene expression patterns, comprehensive molecular profiling of the human LS has not been performed. Here, we conducted single nucleus RNA-sequencing (snRNA-seq) to generate the first transcriptomic profiles of the human LS using postmortem human brain tissue samples from 3 neurotypical donors. Our analysis identified 4 transcriptionally distinct neuronal cell types within the human LS that are enriched for TRPC4, the gene encoding Trp-related protein 4. Differential expression analysis revealed a distinct LS neuronal cell type that is enriched for OPRM1, the gene encoding the µ-opioid receptor. Leveraging recently collected mouse LS snRNA-seq datasets, we also conducted a cross-species analysis. Our results demonstrate that TRPC4 enrichment in the LS is highly conserved between human and mouse, while FREM2, which encodes FRAS1 related extracellular matrix protein 2, is enriched only in the human LS. Together, these results highlight transcriptional heterogeneity of the human LS, and identify robust marker genes for the human LS.

2.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712198

RESUMEN

The hippocampus contains many unique cell types, which serve the structure's specialized functions, including learning, memory and cognition. These cells have distinct spatial topography, morphology, physiology, and connectivity, highlighting the need for transcriptome-wide profiling strategies that retain cytoarchitectural organization. Here, we generated spatially-resolved transcriptomics (SRT) and single-nucleus RNA-sequencing (snRNA-seq) data from adjacent tissue sections of the anterior human hippocampus across ten adult neurotypical donors. We defined molecular profiles for hippocampal cell types and spatial domains. Using non-negative matrix factorization and transfer learning, we integrated these data to define gene expression patterns within the snRNA-seq data and infer the expression of these patterns in the SRT data. With this approach, we leveraged existing rodent datasets that feature information on circuit connectivity and neural activity induction to make predictions about axonal projection targets and likelihood of ensemble recruitment in spatially-defined cellular populations of the human hippocampus. Finally, we integrated genome-wide association studies with transcriptomic data to identify enrichment of genetic components for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders across cell types, spatial domains, and gene expression patterns of the human hippocampus. To make this comprehensive molecular atlas accessible to the scientific community, both raw and processed data are freely available, including through interactive web applications.

3.
Hippocampus ; 34(5): 218-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362938

RESUMEN

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

4.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352580

RESUMEN

Recent advances in spatially-resolved single-omics and multi-omics technologies have led to the emergence of computational tools to detect or predict spatial domains. Additionally, histological images and immunofluorescence (IF) staining of proteins and cell types provide multiple perspectives and a more complete understanding of tissue architecture. Here, we introduce Proust, a scalable tool to predict discrete domains using spatial multi-omics data by combining the low-dimensional representation of biological profiles based on graph-based contrastive self-supervised learning. Our scalable method integrates multiple data modalities, such as RNA, protein, and H&E images, and predicts spatial domains within tissue samples. Through the integration of multiple modalities, Proust consistently demonstrates enhanced accuracy in detecting spatial domains, as evidenced across various benchmark datasets and technological platforms.

5.
Elife ; 122024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266073

RESUMEN

Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.


Asunto(s)
Locus Coeruleus , Núcleo Solitario , Humanos , Perfilación de la Expresión Génica , Sistema Nervioso Central , Norepinefrina , Expresión Génica
6.
Transl Psychiatry ; 14(1): 52, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263132

RESUMEN

The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas Quinasas , Humanos , Transducción de Señal , Inflamación , ARN
7.
Neuropsychopharmacology ; 49(3): 521-531, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37563281

RESUMEN

Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and prelimbic cortex (PrL), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-PrL projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and PrL for local field potential (LFP) recordings during rCPT training, and identified an increase in PrL delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the PrL in theta frequencies during correct responses while the PrL leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.


Asunto(s)
Locus Coeruleus , Roedores , Ratas , Ratones , Humanos , Masculino , Animales , Atención/fisiología , Corteza Cerebral , Fenómenos Electrofisiológicos
8.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38045413

RESUMEN

The dentate gyrus of the anterior hippocampus is important for many human cognitive functions, including regulation of learning, memory, and mood. However, the postnatal development and aging of the dentate gyrus throughout the human lifespan has yet to be fully characterized in the same molecular and spatial detail as other species. Here, we generated a spatially-resolved molecular atlas of the dentate gyrus in postmortem human tissue using the 10x Genomics Visium platform to retain extranuclear transcripts and identify changes in molecular topography across the postnatal lifespan. We found enriched expression of extracellular matrix markers during infancy and increased expression of GABAergic cell-type markers GAD1, LAMP5, and CCK after infancy. While we identified a conserved gene signature for mouse neuroblasts in the granule cell layer (GCL), many of those genes are not specific to the GCL, and we found no evidence of signatures for other granule cell lineage stages at the GCL post-infancy. We identified a wide-spread hippocampal aging signature and an age-dependent increase in neuroinflammation associated genes. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.

9.
Behav Processes ; 212: 104941, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673291

RESUMEN

Attention is a cognitive domain often disrupted in neuropsychiatric disorders and continuous performance tests (CPTs) are common clinical assays of attention. In CPTs, participants produce a behavioral response to target stimuli and refrain from responding to non-target stimuli. Performance in CPTs is measured as the ability to discriminate between targets and non-targets. Rodent versions of CPTs (rCPTs) have been validated with both anatomical and pharmacological studies, providing a translational platform for understanding attention function. In humans, stimulus degradation, the inclusion of visual noise in the image to reduce resolution, in CPTs impairs performance. Reduced image contrast, changes in the relative luminescence of elements in the image, has been used in rCPTs to test similar constructs, but, to our knowledge, reduced image resolution has not been tested in an rCPT. In this study, we tested multiple levels of stimulus degradation in a touchscreen version of the rCPT in mice. We found that stimulus degradation significantly decreased performance in males and females. Specifically, we found decreased stimulus discrimination and increases in hit reaction time and reaction time variability. These findings are in line with the effects of stimulus degradation in human studies. These data extend the utility and translational value of the family of rCPTs by demonstrating that stimulus degradation in the form of reduced image resolution produces qualitatively similar behavioral responses in mice as those in previous human studies.

10.
bioRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425939

RESUMEN

The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.

11.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131757

RESUMEN

Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and anterior cingulate cortex (ACC), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-ACC projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and ACC for local field potential (LFP) recordings during rCPT training, and identified an increase in ACC delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the ACC in theta frequencies during correct responses while the ACC leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.

12.
Hippocampus ; 33(9): 1009-1027, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37226416

RESUMEN

Activity-regulated gene (ARG) expression patterns in the hippocampus (HPC) regulate synaptic plasticity, learning, and memory, and are linked to both risk and treatment responses for many neuropsychiatric disorders. The HPC contains discrete classes of neurons with specialized functions, but cell type-specific activity-regulated transcriptional programs are not well characterized. Here, we used single-nucleus RNA-sequencing (snRNA-seq) in a mouse model of acute electroconvulsive seizures (ECS) to identify cell type-specific molecular signatures associated with induced activity in HPC neurons. We used unsupervised clustering and a priori marker genes to computationally annotate 15,990 high-quality HPC neuronal nuclei from N = 4 mice across all major HPC subregions and neuron types. Activity-induced transcriptomic responses were divergent across neuron populations, with dentate granule cells being particularly responsive to activity. Differential expression analysis identified both upregulated and downregulated cell type-specific gene sets in neurons following ECS. Within these gene sets, we identified enrichment of pathways associated with varying biological processes such as synapse organization, cellular signaling, and transcriptional regulation. Finally, we used matrix factorization to reveal continuous gene expression patterns differentially associated with cell type, ECS, and biological processes. This work provides a rich resource for interrogating activity-regulated transcriptional responses in HPC neurons at single-nuclei resolution in the context of ECS, which can provide biological insight into the roles of defined neuronal subtypes in HPC function.


Asunto(s)
Hipocampo , Neuronas , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Aprendizaje/fisiología , Regulación de la Expresión Génica/genética , Convulsiones , Expresión Génica
13.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066216

RESUMEN

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation (CRISPRa) system in which catalytically-dead Cas9 (dCas9) fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs (sgRNAs), resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

14.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824961

RESUMEN

Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals novel spatial domains and cell-cell interactions relevant for psychiatric disease. The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.

15.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747726

RESUMEN

High-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images can be a challenge. Here, we introduce Samui, a performant and interactive image visualization tool that runs completely in the web browser. Samui is specifically designed for fast image visualization and annotation and enables users to browse through large images and their selected features within seconds of receiving a link. We demonstrate the broad utility of Samui with images generated with two platforms: Vizgen MERFISH and 10x Genomics Visium Spatial Gene Expression. Samui along with example datasets is available at https://samuibrowser.com.

16.
Neuropsychopharmacology ; 48(3): 529-539, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369482

RESUMEN

The lateral septum (LS) is a basal forebrain GABAergic region that is implicated in social novelty. However, the neural circuits and cell signaling pathways that converge on the LS to mediate social behaviors aren't well understood. Multiple lines of evidence suggest that signaling of brain-derived neurotrophic factor (BDNF) through its receptor TrkB plays important roles in social behavior. BDNF is not locally produced in LS, but we demonstrate that nearly all LS GABAergic neurons express TrkB. Local TrkB knock-down in LS neurons decreased social novelty recognition and reduced recruitment of neural activity in LS neurons in response to social novelty. Since BDNF is not synthesized in LS, we investigated which inputs to LS could serve as potential BDNF sources for controlling social novelty recognition. We demonstrate that selectively ablating inputs to LS from the basolateral amygdala (BLA), but not from ventral CA1 (vCA1), impairs social novelty recognition. Moreover, depleting BDNF selectively in BLA-LS projection neurons phenocopied the decrease in social novelty recognition caused by either local LS TrkB knockdown or ablation of BLA-LS inputs. These data support the hypothesis that BLA-LS projection neurons serve as a critical source of BDNF for activating TrkB signaling in LS neurons to control social novelty recognition.


Asunto(s)
Complejo Nuclear Basolateral , Ratones , Animales , Complejo Nuclear Basolateral/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Neuronas GABAérgicas/metabolismo
17.
Mol Psychiatry ; 28(1): 76-82, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36224259

RESUMEN

Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD) caused by autosomal dominant mutations in the Transcription Factor 4 (TCF4) gene. TCF4 is a basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we propose that SCN10A is an important target gene of TCF4 that is an applicable therapeutic approach for PTHS. Scn10a encodes the voltage-gated sodium channel Nav1.8 and is consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior literature and present novel data that suggests inhibiting Nav1.8 in PTHS mouse models is effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and posit this therapeutic approach as a treatment for PTHS.


Asunto(s)
Discapacidad Intelectual , Canal de Sodio Activado por Voltaje NAV1.8 , Animales , Ratones , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Facies , Hiperventilación/genética , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Factor de Transcripción 4/genética , Canal de Sodio Activado por Voltaje NAV1.8/química , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
18.
Neuropsychopharmacology ; 48(1): 243-244, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915230

Asunto(s)
Encéfalo , Recompensa
20.
Biol Imaging ; 3: e23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38510173

RESUMEN

Spatially resolved transcriptomics (SRT) is a growing field that links gene expression to anatomical context. SRT approaches that use next-generation sequencing (NGS) combine RNA sequencing with histological or fluorescent imaging to generate spatial maps of gene expression in intact tissue sections. These technologies directly couple gene expression measurements with high-resolution histological or immunofluorescent images that contain rich morphological information about the tissue under study. While broad access to NGS-based spatial transcriptomic technology is now commercially available through the Visium platform from the vendor 10× Genomics, computational tools for extracting image-derived metrics for integration with gene expression data remain limited. We developed VistoSeg as a MATLAB pipeline to process, analyze and interactively visualize the high-resolution images generated in the Visium platform. VistoSeg outputs can be easily integrated with accompanying transcriptomic data to facilitate downstream analyses in common programing languages including R and Python. VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially resolved gene expression data. Integration of this data enhances the ability to understand the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...