Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(12)2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38137003

RESUMEN

Peanut (Arachis hypogaea) and its wild relatives are among the few species that naturally synthesize resveratrol, a well-known stilbenoid phytoalexin that plays a crucial role in plant defense against biotic and abiotic stresses. Resveratrol has received considerable attention due to its health benefits, such as preventing and treating various human diseases and disorders. Chalcone (CHS) and Stilbene (STS) Synthases are plant-specific type III Polyketide Synthases (PKSs) that share the same substrates and are key branch enzymes in the biosynthesis of flavonoids and stilbenoids, respectively. Although resveratrol accumulation in response to external stimulus has been described in peanut, there are no comprehensive studies of the CHS and STS gene families in the genus Arachis. In the present study, we identified and characterized 6 CHS and 46 STS genes in the tetraploid peanut and an average of 4 CHS and 22 STS genes in three diploid wild species (Arachis duranensis, Arachis ipaënsis and Arachis stenosperma). The CHS and STS gene and protein structures, chromosomal distributions, phylogenetic relationships, conserved amino acid domains, and cis-acting elements in the promoter regions were described for all Arachis species studied. Based on gene expression patterns of wild A. stenosperma STS genes in response to different biotic and abiotic stresses, we selected the candidate AsSTS4 gene, which is strongly induced by ultraviolet (UV) light exposure, for further functional investigation. The AsSTS4 overexpression in peanut hairy roots significantly reduced (47%) root-knot nematode infection, confirming that stilbene synthesis activation in transgenic plants can increase resistance to pathogens. These findings contribute to understanding the role of resveratrol in stress responses in Arachis species and provide the basis for genetic engineering for improved production of valuable secondary metabolites in plants.


Asunto(s)
Arachis , Fabaceae , Humanos , Arachis/genética , Arachis/metabolismo , Estudio de Asociación del Genoma Completo , Filogenia , Resveratrol/metabolismo , Fabaceae/genética
2.
PLoS One ; 18(5): e0285504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200365

RESUMEN

Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.


Asunto(s)
Glycine max , Nematodos , Animales , Glycine max/genética , Glycine max/metabolismo , Nematodos/genética , Transgenes , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Genotipo
3.
Plants (Basel) ; 11(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35161389

RESUMEN

Stress priming is an important strategy for enhancing plant defense capacity to deal with environmental challenges and involves reprogrammed transcriptional responses. Although ultraviolet (UV) light exposure is a widely adopted approach to elicit stress memory and tolerance in plants, the molecular mechanisms underlying UV-mediated plant priming tolerance are not fully understood. Here, we investigated the changes in the global transcriptome profile of wild Arachis stenosperma leaves in response to UV-C exposure. A total of 5751 differentially expressed genes (DEGs) were identified, with the majority associated with cell signaling, protein dynamics, hormonal and transcriptional regulation, and secondary metabolic pathways. The expression profiles of DEGs known as indicators of priming state, such as transcription factors, transcriptional regulators and protein kinases, were further characterized. A meta-analysis, followed by qRT-PCR validation, identified 18 metaDEGs as being commonly regulated in response to UV and other primary stresses. These genes are involved in secondary metabolism, basal immunity, cell wall structure and integrity, and may constitute important players in the general defense processes and establishment of a priming state in A. stenosperma. Our findings contribute to a better understanding of transcriptional dynamics involved in wild Arachis adaptation to stressful conditions of their natural habitats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA