Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arq. bras. cardiol ; Arq. bras. cardiol;114(6): 1029-1037, Jun., 2020. graf
Artículo en Portugués | LILACS, Sec. Est. Saúde SP | ID: biblio-1131245

RESUMEN

Resumo Fundsamento As sementes de Moringa oleifera , que são utilizadas para clarificação de água, contêm uma lectina chamada WSMoL que tem mostrado atividade antibacteriana e imunomoduladora in vitro . Devido ao seu valor nutritivo e potencial terapêutico, as folhas e as sementes dessa árvore são consumidas em algumas comunidades. Algumas lectinas de plantas não são tóxicas para mamíferos, mas tem sido relatado que outras são prejudiciais quando ingeridas ou administradas por outros meios. Objetivo Como um dos passos necessários para determinar a segurança de WSMoL, nós avaliamos os possíveis efeitos cardiotóxicos desta proteína purificada. Métodos Durante 21 dias consecutivos, a WSMoL foi administrada a camundongos por gavagem. Foram investigadas as funções eletrofisiológicas, mecânicas e metabólicas in vivo e ex vivo por meio de registros eletrocardiográficos, ressonância magnética nuclear e respirometria de alta resolução. Resultados O tratamento com WSMoL não induziu alterações nos níveis de glicose no sangue ou peso corporal em comparação com o grupo controle. Adicionalmente, as relações peso cardíaco/peso corporal e peso cardíaco/comprimento tibial estavam semelhantes em ambos os grupos. A ingestão de lectina também não modificou a tolerância à glicose ou resistência à insulina. Não foram observadas alterações nos parâmetros eletrocardiográficos ou na duração do potencial de ação cardíaco. Os corações dos camundongos dos grupos controle e WSMoL mostraram função ventricular esquerda preservada. Além disso, a WSMoL não induziu alterações na função mitocondrial (em todos os casos, p > 0,05). Conclusões A administração de WSMoL demonstrou ter um perfil de segurança cardíaca. Estes resultados contribuem à avaliação de segurança do uso de sementes de M. oleifera para tratar água, visto que essa lectina está presente na preparação empregada por algumas populações com esse fim. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Abstract Background Moringa oleifera seeds, which are used for water clarification, contain a lectin named WSMoL which has shown in vitro antibacterial and immunomodulatory activity. Due to their nutritional value and therapeutic potential, the leaves and seeds of this tree are eaten in some communities. Some plant lectins are non-toxic to mammals, but others have been reported to be harmful when ingested or administered by other means. Objective As one of the steps needed to define the safety of WSMoL, we evaluated possible cardiotoxic effects of this purified protein. Methods: WSMoL was administered for 21 consecutive days to mice by gavage. Electrophysiological, mechanical, and metabolic cardiac functions were investigated by in vivo and ex vivo electrocardiographic recordings, nuclear magnetic resonance, and high-resolution respirometry. Results The treatment with WSMoL did not induce changes in blood glucose levels or body weight in comparison with control group. Moreover, the heart weight/body weight and heart weight/tibia length ratios were similar in both groups. Lectin ingestion also did not modify glucose tolerance or insulin resistance. No alterations were observed in electrocardiographic parameters or cardiac action potential duration. The heart of mice from the control and WSMoL groups showed preserved left ventricular function. Furthermore, WSMoL did not induce changes in mitochondrial function (in all cases, p > 0.05). Conclusions The administration of WSMoL demonstrated a cardiac safety profile. These results contribute to the safety evaluation of using M. oleifera seeds to treat water, since this lectin is present in the preparation employed by some populations to this end. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0)


Asunto(s)
Animales , Ratones , Semillas/química , Extractos Vegetales/farmacología , Moringa oleifera/química , Lectinas de Plantas/farmacología , Agua , Extractos Vegetales/química , Lectinas de Plantas/aislamiento & purificación
2.
Arq Bras Cardiol ; 114(6): 1029-1037, 2020 06.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-32187285

RESUMEN

Background Moringa oleifera seeds, which are used for water clarification, contain a lectin named WSMoL which has shown in vitro antibacterial and immunomodulatory activity. Due to their nutritional value and therapeutic potential, the leaves and seeds of this tree are eaten in some communities. Some plant lectins are non-toxic to mammals, but others have been reported to be harmful when ingested or administered by other means. Objective As one of the steps needed to define the safety of WSMoL, we evaluated possible cardiotoxic effects of this purified protein. Methods: WSMoL was administered for 21 consecutive days to mice by gavage. Electrophysiological, mechanical, and metabolic cardiac functions were investigated by in vivo and ex vivo electrocardiographic recordings, nuclear magnetic resonance, and high-resolution respirometry. Results The treatment with WSMoL did not induce changes in blood glucose levels or body weight in comparison with control group. Moreover, the heart weight/body weight and heart weight/tibia length ratios were similar in both groups. Lectin ingestion also did not modify glucose tolerance or insulin resistance. No alterations were observed in electrocardiographic parameters or cardiac action potential duration. The heart of mice from the control and WSMoL groups showed preserved left ventricular function. Furthermore, WSMoL did not induce changes in mitochondrial function (in all cases, p > 0.05). Conclusions The administration of WSMoL demonstrated a cardiac safety profile. These results contribute to the safety evaluation of using M. oleifera seeds to treat water, since this lectin is present in the preparation employed by some populations to this end. (Arq Bras Cardiol. 2020; [online].ahead print, PP.0-0).


Asunto(s)
Moringa oleifera/química , Extractos Vegetales/farmacología , Lectinas de Plantas/farmacología , Semillas/química , Animales , Ratones , Extractos Vegetales/química , Lectinas de Plantas/aislamiento & purificación , Agua
3.
J Neurochem ; 149(5): 624-640, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31001830

RESUMEN

The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2  generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Hexoquinasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Animales , Neurogénesis/fisiología , Fosforilación Oxidativa , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
4.
Exp Physiol ; 104(3): 306-321, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578638

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT: Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Insulina/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Obesidad/fisiopatología , Descanso/fisiología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA