Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Physiol ; 9: 1839, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618844

RESUMEN

To assess the physical capacity of rats in forced swim tests, the animal should perform a continuous activity (CON) at the surface to avoid apnea. Bobbing movement (BOB), vigorous paddling known as climbing (CLI), and diving activity (DIV) are inadequate swimming patterns known to increase the exercise intensity variability, impairing the test reliability. Thus, the exercise work accomplished and related physiological variables, such as the blood lactate concentration, may be unreproducible in forced swim. This study aimed to verify the exercise work reproducibility in rats with a 30-min test-retest at maximal lactate steady state (MLSS) intensity using a tethered-swimming apparatus that analyzes swimming patterns by the direct measurement of swimming force. Additionally, it was determined the swimming force and duration of CON, BOB, CLI, and DIV at physiologically different exercise-intensities. The swimming force at MLSS (n = 64) was 38 ± 7 gf.Kg-1, while the blood lactate concentration was 4.2 ± 1.6 mmol.L-1. In the test-retest (N = 23), swimming force (36.6 ± 7 gf.Kg-1 vs. 36.4 ± 7 gf.Kg-1) and blood lactate concentration (4.7 ± 1.7 mmol.L-1 vs. 4.2 ± 1.7 mmol.l-1) were similar, but only the swimming force was highly correlated (0.90 and 0.31). Although it was not statistically different, the swimming force for CON tends to be slightly lower than CLI and slightly higher than BOB independently of exercise-intensity. The CON pattern predominates (∼52.8 ± 18%) at intensities below and of MLSS but BOB was the swimming pattern more often observed above MLSS-intensity (52.6 ± 18%). The present study used a tethered swimming apparatus to investigate the reliability of forced swim tests for exercise testing in rats and better understand the swimming patterns when determining the MLSS, but the results can be extended to any study that rely on forced swim for exercise testing and training. The result suggests that, at least at intensities of physiological stability, the exercise work accomplished by rats is reproducible in forced swim, but the blood lactate concentration seems to be affected by other factors, such as the apnea and stress caused by the possibility of drowning, besides the exercise-intensity.

2.
Braz J Phys Ther ; 17(6): 614-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24346296

RESUMEN

BACKGROUND: The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. OBJECTIVES: To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output (VCO2) using two mathematical models and to compare the results to those of the visual method. METHOD: Ten sedentary middle-aged men (53.9 ± 3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between VCO2 and oxygen uptake (VO2); 2) the linear-linear model, based on fitting the curves to the set of VCO2 data (Lin-LinVCO2); 3) a bi-segmental linear regression of Hinkley's algorithm applied to HR (HMM-HR), VCO2 (HMM-VCO2), and sEMG data (HMM-RMS). RESULTS: There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinVCO2, HMM-HR, HMM-VCO2, and HMM-RMS. CONCLUSION: The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of VCO2, HR responses, and sEMG.


Asunto(s)
Dióxido de Carbono/metabolismo , Electromiografía , Frecuencia Cardíaca/fisiología , Modelos Teóricos , Estudios Transversales , Prueba de Esfuerzo , Humanos , Masculino , Persona de Mediana Edad
3.
Braz. j. phys. ther. (Impr.) ; 17(6): 614-622, dez. 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-696991

RESUMEN

BACKGROUND: The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. OBJECTIVES: To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output ( ) using two mathematical models and to compare the results to those of the visual method. METHOD: Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between and oxygen uptake ( ); 2) the linear-linear model, based on fitting the curves to the set of data (Lin-Lin ); 3) a bi-segmental linear regression of Hinkley' s algorithm applied to HR (HMM-HR), (HMM- ), and sEMG data (HMM-RMS). RESULTS: There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-Lin , HMM-HR, HMM-CO2, and HMM-RMS. CONCLUSION: The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of , HR responses, and sEMG. .


Asunto(s)
Humanos , Masculino , Persona de Mediana Edad , Dióxido de Carbono/metabolismo , Electromiografía , Frecuencia Cardíaca/fisiología , Modelos Teóricos , Estudios Transversales , Prueba de Esfuerzo
4.
Int J Exerc Sci ; 2(4): 269-279, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-27182321

RESUMEN

The main aim of the present investigation was to verify if the aerobic capacity (AC) measured in tethered swimming corresponds to the maximal lactate steady state (MLSS) and its correlation with 30 min and 400m free style swimming. Twenty-five swimmers were submitted to an incremental tethered swimming test (ITS) with an initial load of 20N and increments of 10N each 3min. After each stage of 3min, the athletes had 30s of interval to blood sample collections that were used to measure blood lactate concentrations ([La-]). The ACBI was determined by the abrupt increase in [La-] versus force (F). The points obtained between [La-] versus force (N) were adjusted by an exponential curve model to determine AC corresponding to 3.5mmol.l-1 (AC3.5) and 4.0mmol.l-1 (AC4.0). After these procedures, the swimmers performed maximal efforts of 30min and 400m in free style swimming. We used the distance performed in 30min and the time performed in 400m to calculate the median velocities (i.e. V30 and V400) of these protocols. After one week, in order to measure the MLSS, nine athletes performed three 30-min tethered swimming efforts with intensities of 90, 100, and 110% of ACBI. The ANOVA one-way was used to compare the ACBI, AC3.5 and AC4.0. Correlations between ACs, and between ACs and V30 and V400 (p<0.05) were determined using the Pearson's correlation coefficient. The intensity corresponding to 100% of ACBI was similar to the MLSS. It was observed significant correlations of the aerobic capacities (i.e. ACBI, AC3.5 and AC4.0) with V30 (r>0.91) and V400 (r>0.63). According to our results, it is possible to conclude that the ACBI corresponds to the MLSS, and both the AC - individually determined - and the AC - determined using fixed blood lactate concentrations of 3.5 and 4.0mmol.l-1 - can be used to predict the mean velocity of 30min and 400m in free style swimming. In addition to that, the tethered swimming system can be used for aerobic development in places where official sized swimming pools are not available, such as rehabilitation clinics and health clubs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA