Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Endocrinol ; 259(1)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552528

RESUMEN

Prior research demonstrated that glucagon has protective roles against inflammation, but its effect on the resolution of inflammation remains elusive. Using in vitro and in vivo approaches, this study aimed to investigate the pro-resolving potential of glucagon on pulmonary neutrophilic inflammation caused by lipopolysaccharide. Lipopolysaccharide induced an increase in the proportions of neutrophils positives to glucagon receptor (GcgR) in vitro. In addition, lipopolysaccharide induced an increase in the neutrophil accumulation and expression of GcgR by the inflammatory cells in the lungs, however, without altering glucagon levels. Intranasal treatment with glucagon, at the peak of neutrophilic inflammation, reduced the neutrophil number in the bronchoalveolar lavage (BAL), and lung tissue within 24 h. The reduction of neutrophilic inflammation provoked by glucagon was accompanied by neutrophilia in the blood, an increase in the apoptosis rate of neutrophils in the BAL, enhance in the pro-apoptotic Bax protein expression, and decrease in the anti-apoptotic Bcl-2 protein levels in the lung. Glucagon also induced a rise in the cleavage of caspase-3 in the lungs; however, it was not significant. Glucagon inhibited the levels of IL-1ß and TNF-α while increasing the content of pro-resolving mediators transforming growth factor (TGF-ß1) and PGE2 in the BAL and lung. Finally, glucagon inhibited lipopolysaccharide-induced airway hyper-reactivity, as evidenced by the reduction in lung elastance values in response to methacholine. In conclusion, glucagon-induced resolution of neutrophilic inflammation by promoting cessation of neutrophil migration and a rise of neutrophil apoptosis and the levels of pro-resolving mediators TGF-ß1 and PGE2.


Asunto(s)
Glucagón , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , Glucagón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Dinoprostona/farmacología , Pulmón , Inflamación/metabolismo , Neutrófilos/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 1040040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465619

RESUMEN

Prior investigation shows an increase in the activity of both hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin system (RAS) in diabetic patients. Moreover, activation of angiotensin-II type 1 receptor (AT1) has been associated with adrenal steroidogenesis. This study investigates the role of RAS on the overproduction of corticosterone in diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice. Captopril (angiotensin-converting enzyme inhibitor), Olmesartan (AT1 receptor antagonist), CGP42112A (AT2 receptor agonist) or PD123319 (AT2 receptor antagonist) were administered daily for 14 consecutive days, starting 7 days post-alloxan. Plasma corticosterone was evaluated by ELISA, while adrenal gland expressions of AT1 receptor, AT2 receptor, adrenocorticotropic hormone receptor MC2R, pro-steroidogenic enzymes steroidogenic acute regulatory protein (StAR), and 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) were assessed using immunohistochemistry or western blot. Diabetic mice showed adrenal gland overexpression of AT1 receptor, MC2R, StAR, and 11ßHSD1 without altering AT2 receptor levels, all of which were sensitive to Captopril or Olmesartan treatment. In addition, PD123319 blocked the ability of Olmesartan to reduce plasma corticosterone levels in diabetic mice. Furthermore, CGP42112A significantly decreased circulating corticosterone levels in diabetic mice, without altering the overexpression of MC2R and StAR in the adrenal glands. Our findings revealed that inhibition of both angiotensin synthesis and AT1 receptor activity reduced the high production of corticosterone in diabetic mice via the reduction of MC2R signaling expression in the adrenal gland. Furthermore, the protective effect of Olmesartan on the overproduction of corticosterone by adrenals in diabetic mice depends on both AT1 receptor blockade and AT2 receptor activation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Sistema Renina-Angiotensina , Glucocorticoides , Corticosterona , Captopril/farmacología , Aloxano
3.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139733

RESUMEN

BACKGROUND: Gold nanoparticles (AuNPs) can inhibit pivotal pathological changes in experimental asthma, but their effect on steroid-insensitive asthma is unclear. The current study assessed the effectiveness of nebulized AuNPs in a murine model of glucocorticoid (GC)-resistant asthma. METHODS: A/J mice were sensitized and subjected to intranasal instillations of ovalbumin (OVA) once a week for nine weeks. Two weeks after starting allergen stimulations, mice were subjected to Budesonide or AuNP nebulization 1 h before stimuli. Analyses were carried out 24 h after the last provocation. RESULTS: We found that mice challenged with OVA had airway hyperreactivity, eosinophil, and neutrophil infiltrates in the lung, concomitantly with peribronchiolar fibrosis, mucus production, and pro-inflammatory cytokine generation compared to sham-challenged mice. These changes were inhibited in mice treated with AuNPs, but not Budesonide. In the GC-resistant asthmatic mice, oxidative stress was established, marked by a reduction in nuclear factor erythroid 2-related factor 2 (NRF2) levels and catalase activity, accompanied by elevated values of thiobarbituric acid reactive substances (TBARS), phosphoinositide 3-kinases δ (PI3Kδ) expression, as well as a reduction in the nuclear expression of histone deacetylase 2 (HDAC2) in the lung tissue, all of which sensitive to AuNPs but not Budesonide treatment. CONCLUSION: These findings suggest that AuNPs can improve GC-insensitive asthma by preserving HDAC2 and NRF2.

4.
Cells ; 11(5)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269381

RESUMEN

Annexin-A1 (AnxA1) and its N-terminal derived peptide Ac2-26 regulate the inflammatory response in several experimental models of disorders. This study evaluated the effect of endogenous AnxA1 and its N-terminal peptide Acetyl 2-26 (Ac2-26) on allergic asthma triggered by house dust mite (HDM) extract in mice. ANXA1-/- and wildtype (WT) mice were exposed to intranasal instillation of HDM every other day for 3 weeks, with analyses performed 24 h following the last exposure. Intranasal administration of peptide Ac2-26 was performed 1 h before HDM, beginning 1 week after the initial antigen application. ANXA1-/- mice stimulated with HDM showed marked exacerbations of airway hyperreactivity (AHR), eosinophil accumulation, subepithelial fibrosis, and mucus hypersecretion, all parameters correlating with overexpression of cytokines (IL-4, IL-13, TNF-α, and TGF-ß) and chemokines (CCL11/eotaxin-1 and CCL2/MCP-1). Intranasal treatment with peptide Ac2-26 decreased eosinophil infiltration, peribronchiolar fibrosis, and mucus exacerbation caused by the allergen challenge. Ac2-26 also inhibited AHR and mediator production. Collectively, our findings show that the AnxA1-derived peptide Ac2-26 protects against several pathological changes associated with HDM allergic reaction, suggesting that this peptide or related AnxA1-mimetic Ac2-26 may represent promising therapeutic candidates for the treatment of allergic asthma.


Asunto(s)
Asma , Inflamación , Alérgenos , Animales , Asma/tratamiento farmacológico , Citocinas , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico
5.
Front Med (Lausanne) ; 8: 644751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458281

RESUMEN

A new infectious disease, named COVID-19, caused by the coronavirus associated to severe acute respiratory syndrome (SARS-CoV-2) has become pandemic in 2020. The three most common pre-existing comorbidities associated with COVID-19-related death are elderly, diabetic, and hypertensive people. A common factor among these risk groups for the outcome of death in patients infected with SARS-CoV-2 is dysbiosis, with an increase in the proportion of bacteria with a pro-inflammatory profile. Due to this dysbiosis, elderly, diabetic, and hypertensive people present a higher propensity to mount an inflammatory environment in the gut with poor immune editing, culminating in a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream. This scenario culminates in a low-grade, persistent, and systemic inflammation. In this context, we propose here that high circulating levels of bacterial products, like lipopolysaccharide (LPS), can potentiate the SARS-CoV-2-induced cytokines, including IL-6, being crucial for development of the cytokine storm in the severe form of the disease. A better understanding on the possible correlation between gut dysbiosis and poor outcomes observed in elderly, diabetic, and hypertensive people can be useful for the development of new therapeutic strategies based on modulation of the gut microbiota.

6.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203121

RESUMEN

Influenza A virus (IAV) infection is a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Since macrophage inflammatory protein 1 α, a chemokine that acts through CC-chemokine receptor (CCR)-5, appears elevated in COPD patients' airways, we evaluated whether CCR5 antagonist Maraviroc could inhibit the exacerbated lung inflammatory response noted after IAV H1N1 infection in mice exposed to cigarette smoke (Cs). C57BL/6 mice, subjected or not to Cs inhalation for 11 days, were infected with H1N1 at day 7. Maraviroc (10 mg/kg) or dexamethasone (1 mg/kg) were given in a therapeutic schedule, followed by the analyses of lung function, survival rate, and inflammatory changes. As compared to mice subjected to Cs or H1N1 alone, the insult combination significantly worsened airway obstruction, neutrophil infiltration in the airways, and the survival rate. All changes were sensitive to Maraviroc but not dexamethasone. Maraviroc also reduced the accumulation of neutrophils and macrophages as well as CXCL1 production in the lung tissue, and serum levels of IL-6, whereas comparable viral titers in the lungs were noted in all infected groups. Collectively, these findings suggest that Maraviroc oral treatment could be an effective therapy for controlling acute exacerbations of respiratory diseases such as COPD.

7.
Front Immunol ; 12: 633540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295325

RESUMEN

Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Susceptibilidad a Enfermedades/etiología , Glucagón/administración & dosificación , Neutrófilos/efectos de los fármacos , Sepsis/etiología , Sepsis/inmunología , Adulto , Animales , Movimiento Celular/inmunología , Quimiotaxis de Leucocito/efectos de los fármacos , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/microbiología , Femenino , Glucagón/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos , Neutrófilos/inmunología
8.
Pharmaceutics ; 13(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068619

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are inflammatory and oxidative imbalance lung conditions with no successful pharmacological therapy and a high mortality rate. Resveratrol (RSV) is a plant-derived stilbene that presents anti-inflammatory and antioxidant effects. However, its therapeutic application remains limited due to its poor bioavailability, which can be solved by the use of nanocarriers. Previously, we demonstrated that nanoencapsulated RSV (RSV-LNC) pre-treatment, performed 4 h before lipopolysaccharide (LPS) stimulation in mice, increased its anti-inflammatory properties. In this study, we evaluated the anti-inflammatory and antioxidant effects, and lung distribution of RSV-LNCs administered therapeutically (6 h post LPS exposure) in a lung injury mouse model. The results showed that RSV-LNCs posttreatment improved lung function and diminished pulmonary inflammation. Moreover, RSV-LNC treatment enhanced the antioxidant catalase level together with a decrease in the oxidative biomarker in mouse lungs, which was accompanied by an increase in pulmonary Nrf2 antioxidant expression. Finally, the presence of RSV in lung tissue was significantly detected when mice received RSV-LNCs but not when they received RSV in its free form. Together, our results confirm that RSV nanoencapsulation promotes an increase in RSV bioavailability, enhancing its therapeutic effects in an LPS-induced lung injury model.

9.
Mem Inst Oswaldo Cruz ; 116: e200552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950107

RESUMEN

Coronaviruses can cause a diverse array of clinical manifestations, from fever with symptoms of the common cold to highly lethal severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). SARS-CoV-2, the coronavirus discovered in Hubei province, China, at the end of 2019, became known worldwide for causing coronavirus disease 2019 (COVID-19). Over one year's time period, the scientific community has produced a large bulk of knowledge about this disease and countless reports about its immune-pathological aspects. This knowledge, including data obtained in postmortem studies, points unequivocally to a hypercoagulability state. However, the name COVID-19 tells us very little about the true meaning of the disease. Our proposal is more comprehensive; it intends to frame COVID-19 in more clinical terminology, making an analogy to viral haemorrhagic fever (VHF). Thus, we found irrefutable evidence in the current literature that COVID-19 is the first viral disease that can be branded as a viral thrombotic fever. This manuscript points out that SARS-CoV-2 goes far beyond pneumonia or SARS. COVID-19 infections promote remarkable interactions among the endothelium, coagulation, and immune response, building up a background capable of promoting a "thrombotic storm," much more than a "cytokine storm." The importance of a viral protease called main protease (Mpro) is highlighted as a critical component for its replication in the host cell. A deeper analysis of this protease and its importance on the coagulation system is also discussed for the first time, mainly because of its similarity with the thrombin and factor Xa molecules, as recently pointed out by structural comparison crystallographic structures.


Asunto(s)
COVID-19 , China , Fiebre , Humanos , SARS-CoV-2
10.
Front Immunol ; 11: 580598, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362766

RESUMEN

Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.


Asunto(s)
Antiinflamatorios/uso terapéutico , Ácidos Araquidónicos/uso terapéutico , Asma/tratamiento farmacológico , Eosinófilos/inmunología , Inflamación/tratamiento farmacológico , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Dinoprostona/uso terapéutico , Humanos , Mediadores de Inflamación/metabolismo
11.
Pharmaceutics ; 12(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187057

RESUMEN

Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174-223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of -7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1ß, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi's beneficial effect is likely due its high levels of oleic acid.

12.
Front Immunol ; 11: 566953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123138

RESUMEN

Rationale: Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective: To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings: Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion: CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.


Asunto(s)
Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Enfermedades Respiratorias/etiología , Enfermedades Respiratorias/metabolismo , Sulfonamidas/farmacología , Animales , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Asma/etiología , Asma/metabolismo , Asma/patología , Biomarcadores , Biopsia , Bleomicina/efectos adversos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Eosinófilos/inmunología , Eosinófilos/metabolismo , Femenino , Fibrosis , Inmunohistoquímica , Leucocitos , Masculino , Ratones , Ratones Noqueados , Ovalbúmina/efectos adversos , Oxidación-Reducción , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/patología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
13.
Front Pharmacol ; 11: 1159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903732

RESUMEN

Local anesthetics (LAs), such as lidocaine and mexiletine, inhibit bronchoconstriction in asthmatics, but adverse effects limit their use for this specific clinical application. In this study, we describe the anti-spasmodic properties of the mexiletine analog 2-(2-aminopropoxy)-3,5-dimethyl, 4-Br-benzene (JME-173), which was synthesized and screened for inducing reduced activity on Na+ channels. The effectiveness of JME-173 was assessed using rat tracheal rings, a GH3 cell line and mouse cardiomyocytes to access changes in smooth muscle contraction, and Na+, and Ca++ionic currents, respectively. Bronchospasm and airway hyper-reactivity (AHR) were studied using whole-body barometric plethysmography in A/J mice. We observed that the potency of JME-173 was 653-fold lower than mexiletine in inhibiting Na+ currents, but 12-fold higher in inhibiting L-type Ca++ currents. JME-173 was also more potent than mexiletine in inhibiting tracheal contraction by carbachol, allergen, extracellular Ca++, or sodium orthovanadate provocations. The effect of JME-173 on carbachol-induced tracheal contraction remained unaltered under conditions of de-epithelized rings, ß2-receptor blockade or adenylate cyclase inhibition. When orally administered, JME-173 and theophylline inhibited methacholine-induced bronchospasm at time points of 1 and 3 h post-treatment, while only JME-173 remained active for at least 6 h. In addition, JME-173 also inhibited AHR in a mouse model of lipopolysaccharide (LPS)-induced lung inflammation. Thus, the mexiletine analog JME-173 shows highly attenuated activity on Na+ channels and optimized anti-spasmodic properties, in a mechanism that is at least in part mediated by regulation of Ca++ inflow toward the cytosol. Thus, JME-173 is a promising alternative for the treatment of clinical conditions marked by life-threatening bronchoconstriction.

14.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L596-L602, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783619

RESUMEN

A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Hipertensión/fisiopatología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/fisiopatología , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/mortalidad , Humanos , Hipertensión/mortalidad , Pandemias , Neumonía Viral/mortalidad , Factores de Riesgo , SARS-CoV-2
15.
Drug Deliv Transl Res ; 10(6): 1700-1715, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32789546

RESUMEN

The co-existence with rhinitis limits the control of asthma. Compared with oral H1 receptor antagonists, intranasal corticosteroids have been demonstrated to provide greater relief of all symptoms of rhinitis and are recommended as first-line treatment for allergic rhinitis. Intrinsic limitations of nasal delivery, such as the presence of the protective mucous layer, the relentless mucociliary clearance, and the consequent reduced residence time of the formulation in the nasal cavity, limit budesonide efficacy to the treatment of local nasal symptoms. To overcome these limitations and to enable the treatment of asthma via nasal administration, we developed a budesonide-loaded lipid-core nanocapsule (BudNC) microagglomerate powder by spray-drying using a one-step innovative approach. BudNC was obtained, as a white powder, using L-leucine as adjuvant with 75 ± 6% yield. The powder showed a bimodal size distribution curve by laser diffraction with a principal peak just above 3 µm and a second one around 0.45 µm and a drug content determined by HPLC of 8.7 mg of budesonide per gram. In vivo after nasal administration, BudNC showed an improved efficacy in terms of reduction of immune cell influx; production of eotaxin-1, the main inflammatory chemokine; and arrest of airways remodeling when compared with a commercial budesonide product in both short- and long-term asthma models. In addition, data showed that the results in the long-term asthma model were more compelling than the results obtained in the short-term model. Graphical abstract.


Asunto(s)
Asma , Budesonida/administración & dosificación , Nanocápsulas , Administración Intranasal , Corticoesteroides , Animales , Asma/tratamiento farmacológico , Budesonida/uso terapéutico , Masculino , Ratones
16.
Eur J Pharmacol ; 885: 173367, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32750364

RESUMEN

Existing evidence suggests that the local anaesthetic mexiletine can be beneficial for patients with asthma. However, caution is required since anaesthesia of the airways inhibits protective bronchodilator neuronal reflexes, limiting applications in conditions of hyperirritable airways. Here, we describe the synthesis of a new series of mexiletine analogues, which were screened for reduced activity in Na+ channels and improved smooth muscle relaxant effects, that were evaluated using the patch-clamp technique and an isolated tracheal organ bath, respectively. JME-173 (1-(4-bromo-3,5-dimethylphenoxy)propan-2-amine) was the most effective among the four mexiletine analogues investigated. JME-173 was then studied in vivo using a murine model of lung inflammation induced by cigarette smoke (CS) and in vitro using neutrophil chemotaxis and mast cell degranulation assays. Finally, the JME-173 pharmacokinetic profile was assessed using HPLC-MS/MS bioanalytical method. JME-173 directly inhibited IL-8 (CXCL8)- and FMLP-induced human neutrophil chemotaxis and allergen-induced mast cell degranulation. After oral administration 1 h before CS exposure, JME-173 (50 mg/kg) strongly reduced the increased number of macrophages and neutrophils recovered in the bronchoalveolar effluent without altering lymphocyte counts. Pharmacokinetic experiments of JME-173 (10 mg/kg, orally) showed values of maximum concentration (Cmax), maximum time (Tmax), area under the blood concentration-time curve (AUC0-t) and area under the blood concentration-time curve from 0-Inf (AUC0-inf) of 163.3 ± 38.3 ng/mL, 1.2 ± 0.3 h, 729.4 ± 118.3 ng*h/ml and 868.9 ± 117.1 ng*h/ml (means ± S.E.M.), respectively. Collectively, these findings suggest that JME-173 has the potential to be an effective oral treatment for diseases associated with bronchoconstriction and inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Mexiletine/análogos & derivados , Mexiletine/farmacología , Parasimpatolíticos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Animales , Área Bajo la Curva , Líquido del Lavado Bronquioalveolar/citología , Degranulación de la Célula/efectos de los fármacos , Humanos , Masculino , Mastocitos/efectos de los fármacos , Ratones , Infiltración Neutrófila/efectos de los fármacos , Técnicas de Placa-Clamp , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Ratas , Ratas Wistar , Humo , Relación Estructura-Actividad , Productos de Tabaco
17.
Artículo en Inglés | MEDLINE | ID: mdl-32625168

RESUMEN

Silicosis is an occupational disease triggered by the inhalation of fine particles of crystalline silica and characterized by inflammation and scarring in the form of nodular lesions in the lungs. In spite of the therapeutic arsenal currently available, there is no specific treatment for the disease. Flunisolide is a potent corticosteroid shown to be effective for controlling chronic lung inflammatory diseases. In this study, the effect of flunisolide on silica-induced lung pathological changes in mice was investigated. Swiss-Webster mice were injected intranasally with silica particles and further treated with flunisolide from day 21 to 27 post-silica challenge. Lung function was assessed by whole body invasive plethysmography. Granuloma formation was evaluated morphometrically, collagen deposition by Picrus sirius staining and quantitated by Sircol. Chemokines and cytokines were evaluated using enzyme-linked immunosorbent assay. The sensitivity of lung fibroblasts was also examined in in vitro assays. Silica challenge led to increased leukocyte numbers (mononuclear cells and neutrophils) as well as production of the chemokine KC/CXCL-1 and the cytokines TNF-α and TGF-ß in the bronchoalveolar lavage. These alterations paralleled to progressive granuloma formation, collagen deposition and impairment of lung function. Therapeutic administration of intranasal flunisolide inhibited granuloma and fibrotic responses, noted 28 days after silica challenge. The upregulation of MIP-1α/CCL-3 and MIP-2/CXCL-2 and the cytokines TNF-α and TGF-ß, as well as deposition of collagen and airway hyper-reactivity to methacholine were shown to be clearly sensitive to flunisolide, as compared to silica-challenge untreated mice. Additionally, flunisolide effectively suppressed the responses of proliferation and MCP-1/CCL-2 production from IL-13 stimulated lung fibroblasts from silica- or saline-challenged mice. In conclusion, we report that intranasal treatment with the corticosteroid flunisolide showed protective properties on pathological features triggered by silica particles in mice, suggesting that the compound may constitute a promising strategy for the treatment of silicosis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Fluocinolona Acetonida/análogos & derivados , Pulmón/efectos de los fármacos , Pulmón/patología , Neumonía/patología , Dióxido de Silicio/toxicidad , Silicosis/patología , Administración Intranasal , Animales , Fibrosis/inducido químicamente , Fibrosis/prevención & control , Fluocinolona Acetonida/administración & dosificación , Masculino , Ratones , Neumonía/inducido químicamente , Neumonía/prevención & control , Silicosis/complicaciones , Silicosis/prevención & control
18.
Eur J Med Chem ; 204: 112492, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717478

RESUMEN

Phosphodiesterase 4 (PDE4) inhibitors have emerged as a new strategy to treat asthma and other lung inflammatory diseases. Searching for new PDE4 inhibitors, we previously reported the discover of LASSBio-448, a sulfonamide with potential to prevent and reverse pivotal pathological features of asthma. In this paper, two novel series of sulfonamide (6a-6m) and sulfonyl hydrazone (7a-7j) analogues of LASSBio-448 have been synthetized and evaluated for selective inhibitory activity toward cAMP-specific PDE4 isoforms. From these studies, we have identified 7j (LASSBio-1632) as a new anti-asthmatic lead-candidate associated with selective inhibition of PDE4A and PDE4D isoenzymes and blockade of airway hyper-reactivity (AHR) and TNF-α production in the lung tissue. In addition, it was able to relax guinea pig trachea on non-sensitized and sensitized animals and showed great TGI permeability.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Animales , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidrazonas/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones
19.
Int J Nanomedicine ; 14: 5215-5228, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31371957

RESUMEN

BACKGROUND: Resveratrol (RSV) has attracted interest as an alternative drug for the treatment of acute lung injury (ALI) and other pulmonary diseases, but its poor oral bioavailability is a limitation. In this study, we employed drug delivery nanotechnology to improve the stability, lung localization and efficacy of orally administered resveratrol to control lung damage leading to ALI. METHODS AND MATERIALS: RSV-loaded lipid-core nanocapsules (RSV-LNCs), prepared by interfacial deposition of biodegradable polymers, were given orally to A/J mice prior to lipopolysaccharide (LPS) intranasal instillation. Inflammatory changes, oxidative stress and lung tissue elastance were assessed 24 h after LPS challenge. RESULTS: RSV-LNCs (5 mg/kg), given 1, 4, 6 or 12 h but not 24 h before provocation, inhibited LPS-induced leukocyte accumulation in the bronchoalveolar fluid (BALF), whereas unloaded nanocapsules (ULNCs) or free RSV (5 mg/kg) were ineffective. RSV-LNCs (2.5-10 mg/kg) but not ULNCs or RSV improved lung function and prevented total leukocyte and neutrophil accumulation equally in both BALF and lung tissue when given 4 h before LPS challenge. Similar findings were seen concerning the generation of a range of pro-inflammatory cytokines such as IL-6, KC, MIP-1α, MIP-2, MCP-1 and RANTES in lung tissue. In addition, only RSV-LNCs inhibited MDA levels and SOD activity in parallel with blockade of the ERK and PI3K/Akt pathways following LPS provocation. CONCLUSION: Nanoformulation of RSV in biodegradable oil-core polymers is an effective strategy to improve the anti-ALI activity of RSV, suggesting that the modified-release formulation of this plant polyphenol may be of great value in clinical conditions associated with ALI and respiratory failure.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Nanocápsulas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/administración & dosificación , Resveratrol/uso terapéutico , Transducción de Señal , Lesión Pulmonar Aguda/complicaciones , Administración Oral , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/efectos de los fármacos , Masculino , Ratones Endogámicos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Hipersensibilidad Respiratoria/complicaciones , Hipersensibilidad Respiratoria/patología , Resveratrol/farmacología
20.
Front Pharmacol ; 9: 1395, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30574088

RESUMEN

Aims: Pulmonary arterial hypertension (PAH) is a disease characterized by an increase in pulmonary vascular resistance and right ventricular (RV) failure. We aimed to determine the effects of human mesenchymal stem cell (hMSC) therapy in a SU5416/hypoxia (SuH) mice model of PAH. Methods and Results: C57BL/6 mice (20-25 g) were exposure to 4 weeks of hypoxia combined vascular endothelial growth factor receptor antagonism (20 mg/kg SU5416; weekly s.c. injections; PAH mice). Control mice were housed in room air. Following 2 weeks of SuH exposure, we injected 5 × 105 hMSCs cells suspended in 50 µL of vehicle (0.6 U/mL DNaseI in PBS) through intravenous injection in the caudal vein. PAH mice were treated only with vehicle. Ratio between pulmonary artery acceleration time and RV ejection time (PAAT/RVET), measure by echocardiography, was significantly reduced in the PAH mice, compared with controls, and therapy with hMSCs normalized this. Significant muscularization of the PA was observed in the PAH mice and hMSC reduced the number of fully muscularized vessels. RV free wall thickness was higher in PAH animals than in the controls, and a single injection of hMSCs reversed RV hypertrophy. Levels of markers of exacerbated apoptosis, tissue inflammation and damage, cell proliferation and oxidative stress were significantly greater in both lungs and RV tissues from PAH group, compared to controls. hMSC injection in PAH animals normalized the expression of these molecules which are involved with PAH and RV dysfunction development and the state of chronicity. Conclusion: These results indicate that hMSCs therapy represents a novel strategy for the treatment of PAH in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...