Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35335906

RESUMEN

The drugs concept has changed during the last few decades, meaning the acceptance of not only low molecular weight entities but also macromolecules as bioagent constituents of pharmaceutics. This has opened a new era for a different class of molecules, namely proteins in general and enzymes in particular. The use of enzymes as therapeutics has posed new challenges in terms of delivery and the need for appropriate carrier systems. In this review, we will focus on enzymes with therapeutic properties and their applications, listing some that reached the pharmaceutical market. Problems associated with their clinical use and nanotechnological strategies to solve some of their drawbacks (i.e., immunogenic reactions and low circulation time) will be addressed. Drug delivery systems will be discussed, with special attention being paid to liposomes, the most well-studied and suitable nanosystem for enzyme delivery in vivo. Examples of liposomal enzymatic formulations under development will be described and successful pre-clinical results of two enzymes, L-Asparaginase and Superoxide dismutase, following their association with liposomes will be extensively discussed.

2.
J Microencapsul ; 26(7): 649-58, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19839801

RESUMEN

Superoxide dismutase (SOD) and catalase (CAT) are active scavengers of reactive oxygen species and were incorporated into ultradeformable vesicles with the aim of increasing enzyme bioavailability (skin delivery). These special very adaptable vesicles have been formulated and optimized for enzyme transport in order to penetrate into or across the intact skin barrier. Anti-inflammatory activity of SOD-loaded, CAT-loaded and of SOD- and CAT-loaded ultradeformable vesicles applied epicutaneously was measured using different protein doses on the skin, on an arachidonic acid-induced mouse ear oedema. The biological anti-oedema activity is a measurement of drug-targeting potentiation in the organ. Delivery by means of deformable vesicles was compared to conventional vesicles or the absence of an enzyme carrier mediated transport. This was done at various times following prophylactic application of the test formulations. Positive reference groups were treated epicutaneously with several low molecular weight non-steroidal anti-inflammatory drugs (NSAIDs). The latter included indomethacin (3 mg kg(-1)), etofenamate (30 mg kg(-1)) and piroxicam (1 mg kg(-1)) and reduced the oedema by 94 +/- 4%, 81 +/- 4% and 42 +/- 5%, respectively, if measured 30 min after ear treatment with a NSAID. Of the enzyme-loaded carriers tested, only the enzyme-loaded ultradeformable vesicles reduced the swelling of ears significantly: SOD (90 microg kg(-1)), CAT (250 microg kg(-1)) and SOD (90 microg kg(-1)) plus CAT (250 microg kg(-1)) reduced the oedema by 70 +/- 12%, 65 +/- 10% and 61 +/- 19%, respectively, at t = 30 min. Aqueous enzyme solutions and empty carriers had no such effect. The combination of two enzymes resulted in no increased therapeutic effect, but the results are inconclusive since only two dose combinations were tested. The results presented in this study suggest that antioxidant enzymes delivered by means of ultradeformable lipid vesicles can serve as a novel region-specific treatment of inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Catalasa/farmacología , Modelos Biológicos , Piel/efectos de los fármacos , Superóxido Dismutasa/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Catalasa/administración & dosificación , Ratones , Superóxido Dismutasa/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...